Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2478/fcds-2024-0007
Automatic crack detection in construction facilities is a challenging yet crucial task. However, existing deep learning (DL)-based semantic segmentation methods for this field are based on fully supervised learning models and pixel-level manual annotation, which are time-consuming and labor-intensive. To solve this problem, this paper proposes a novel crack semantic segmentation network using weakly supervised approach and mixed-label training strategy. Firstly, an image patch-level classifier of crack is trained to generate a coarse localization map for automatic pseudo-labeling of cracks combined with a thresholding-based method. Then, we integrated the pseudo-annotated with manual-annotated samples with a ratio of 4:1 to train the crack segmentation network with a mixed-label training strategy, in which the manual labels were assigned with a higher weight value. The experimental data on two public datasets demonstrate that our proposed method achieves a comparable accuracy with the fully supervised methods, reducing over 65% of the manual annotation workload.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2478/fcds-2024-0007
- OA Status
- diamond
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391909911
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391909911Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2478/fcds-2024-0007Digital Object Identifier
- Title
-
Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training StrategyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-01Full publication date if available
- Authors
-
Shuyuan Zhang, Hongli Xu, Xiaoran Zhu, Lipeng XieList of authors in order
- Landing page
-
https://doi.org/10.2478/fcds-2024-0007Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2478/fcds-2024-0007Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Thresholding, Annotation, Classifier (UML), Workload, Machine learning, Supervised learning, Pattern recognition (psychology), Artificial neural network, Image (mathematics), Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391909911 |
|---|---|
| doi | https://doi.org/10.2478/fcds-2024-0007 |
| ids.doi | https://doi.org/10.2478/fcds-2024-0007 |
| ids.openalex | https://openalex.org/W4391909911 |
| fwci | 0.49093966 |
| type | article |
| title | Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy |
| biblio.issue | 1 |
| biblio.volume | 49 |
| biblio.last_page | 118 |
| biblio.first_page | 95 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8728852868080139 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6833395957946777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6796159744262695 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C191178318 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6654772162437439 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[3].display_name | Thresholding |
| concepts[4].id | https://openalex.org/C2776321320 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6126102805137634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[4].display_name | Annotation |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5136529803276062 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C2778476105 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5128036141395569 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q628539 |
| concepts[6].display_name | Workload |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47417914867401123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C136389625 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47341543436050415 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[8].display_name | Supervised learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4062228202819824 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2849273681640625 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.25488752126693726 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8728852868080139 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6833395957946777 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6796159744262695 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/thresholding |
| keywords[3].score | 0.6654772162437439 |
| keywords[3].display_name | Thresholding |
| keywords[4].id | https://openalex.org/keywords/annotation |
| keywords[4].score | 0.6126102805137634 |
| keywords[4].display_name | Annotation |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.5136529803276062 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/workload |
| keywords[6].score | 0.5128036141395569 |
| keywords[6].display_name | Workload |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.47417914867401123 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/supervised-learning |
| keywords[8].score | 0.47341543436050415 |
| keywords[8].display_name | Supervised learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4062228202819824 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.2849273681640625 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.25488752126693726 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.2478/fcds-2024-0007 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736700591 |
| locations[0].source.issn | 0867-6356, 2300-3405 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0867-6356 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Foundations of Computing and Decision Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320322 |
| locations[0].source.host_organization_name | De Gruyter Open |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| locations[0].source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Foundations of Computing and Decision Sciences |
| locations[0].landing_page_url | https://doi.org/10.2478/fcds-2024-0007 |
| locations[1].id | pmh:oai:doaj.org/article:62317abc42c14c2caa3cf16131515499 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Foundations of Computing and Decision Sciences, Vol 49, Iss 1, Pp 95-118 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/62317abc42c14c2caa3cf16131515499 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100699726 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5218-2668 |
| authorships[0].author.display_name | Shuyuan Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Cyber Science and Engineering , Zhengzhou University , , Zhengzhou , China |
| authorships[0].institutions[0].id | https://openalex.org/I38877650 |
| authorships[0].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhengzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuyuan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Cyber Science and Engineering , Zhengzhou University , , Zhengzhou , China |
| authorships[1].author.id | https://openalex.org/A5063184427 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3831-4577 |
| authorships[1].author.display_name | Hongli Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Cyber Science and Engineering , Zhengzhou University , , Zhengzhou , China |
| authorships[1].institutions[0].id | https://openalex.org/I38877650 |
| authorships[1].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhengzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongli Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Cyber Science and Engineering , Zhengzhou University , , Zhengzhou , China |
| authorships[2].author.id | https://openalex.org/A5046338161 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5010-5386 |
| authorships[2].author.display_name | Xiaoran Zhu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800372957 |
| authorships[2].affiliations[0].raw_affiliation_string | Hanwei Electronics Group Corporation , , Zhengzhou , China |
| authorships[2].institutions[0].id | https://openalex.org/I2800372957 |
| authorships[2].institutions[0].ror | https://ror.org/0098hst83 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800372957 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Electronics Technology Group Corporation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoran Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hanwei Electronics Group Corporation , , Zhengzhou , China |
| authorships[3].author.id | https://openalex.org/A5060745388 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9632-6982 |
| authorships[3].author.display_name | Lipeng Xie |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800372957 |
| authorships[3].affiliations[0].raw_affiliation_string | Hanwei Electronics Group Corporation , , Zhengzhou , China |
| authorships[3].institutions[0].id | https://openalex.org/I2800372957 |
| authorships[3].institutions[0].ror | https://ror.org/0098hst83 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800372957 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Electronics Technology Group Corporation |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lipeng Xie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hanwei Electronics Group Corporation , , Zhengzhou , China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2478/fcds-2024-0007 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-18T00:00:00 |
| display_name | Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2361861616, https://openalex.org/W2263699433, https://openalex.org/W1542224353, https://openalex.org/W2377979023, https://openalex.org/W1661087619, https://openalex.org/W2000785801, https://openalex.org/W986318368, https://openalex.org/W2218034408, https://openalex.org/W2392921965, https://openalex.org/W2384410913 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.2478/fcds-2024-0007 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736700591 |
| best_oa_location.source.issn | 0867-6356, 2300-3405 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0867-6356 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Foundations of Computing and Decision Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320322 |
| best_oa_location.source.host_organization_name | De Gruyter Open |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Foundations of Computing and Decision Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.2478/fcds-2024-0007 |
| primary_location.id | doi:10.2478/fcds-2024-0007 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736700591 |
| primary_location.source.issn | 0867-6356, 2300-3405 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0867-6356 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Foundations of Computing and Decision Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320322 |
| primary_location.source.host_organization_name | De Gruyter Open |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| primary_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Foundations of Computing and Decision Sciences |
| primary_location.landing_page_url | https://doi.org/10.2478/fcds-2024-0007 |
| publication_date | 2024-02-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1981276685, https://openalex.org/W2948461581, https://openalex.org/W2128880484, https://openalex.org/W4321016107, https://openalex.org/W4312566218, https://openalex.org/W3034373787, https://openalex.org/W2099244020, https://openalex.org/W1783315696, https://openalex.org/W3082043672, https://openalex.org/W2970332685, https://openalex.org/W3163259028, https://openalex.org/W3153381206, https://openalex.org/W3210735189, https://openalex.org/W2962758679, https://openalex.org/W3093870111, https://openalex.org/W2912350898, https://openalex.org/W1974605586, https://openalex.org/W4377965919, https://openalex.org/W3201890785, https://openalex.org/W2005029343, https://openalex.org/W3026882584, https://openalex.org/W3012747144, https://openalex.org/W2133059825, https://openalex.org/W1901129140, https://openalex.org/W2884585870, https://openalex.org/W2738853914, https://openalex.org/W2075935813, https://openalex.org/W3202439968, https://openalex.org/W2963466857, https://openalex.org/W2964308596, https://openalex.org/W2899242765, https://openalex.org/W2058988978, https://openalex.org/W2124592697, https://openalex.org/W2295107390 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 8, 47, 72, 83, 95, 106, 118, 135 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.in | 4, 110 |
| abstract_inverted_index.is | 7, 68 |
| abstract_inverted_index.of | 66, 79, 97, 146 |
| abstract_inverted_index.on | 26, 125 |
| abstract_inverted_index.to | 70, 99 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.4:1 | 98 |
| abstract_inverted_index.65% | 145 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.and | 31, 38, 57 |
| abstract_inverted_index.are | 24, 36 |
| abstract_inverted_index.for | 21, 76 |
| abstract_inverted_index.map | 75 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 89, 101, 112, 139, 147 |
| abstract_inverted_index.two | 126 |
| abstract_inverted_index.yet | 10 |
| abstract_inverted_index.data | 124 |
| abstract_inverted_index.deep | 15 |
| abstract_inverted_index.over | 144 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.this | 22, 42, 44 |
| abstract_inverted_index.were | 115 |
| abstract_inverted_index.with | 82, 91, 94, 105, 117, 138 |
| abstract_inverted_index.Then, | 86 |
| abstract_inverted_index.based | 25 |
| abstract_inverted_index.crack | 2, 49, 67, 102 |
| abstract_inverted_index.field | 23 |
| abstract_inverted_index.fully | 27, 140 |
| abstract_inverted_index.image | 63 |
| abstract_inverted_index.novel | 48 |
| abstract_inverted_index.paper | 45 |
| abstract_inverted_index.ratio | 96 |
| abstract_inverted_index.solve | 41 |
| abstract_inverted_index.task. | 12 |
| abstract_inverted_index.train | 100 |
| abstract_inverted_index.using | 53 |
| abstract_inverted_index.which | 35, 111 |
| abstract_inverted_index.coarse | 73 |
| abstract_inverted_index.cracks | 80 |
| abstract_inverted_index.higher | 119 |
| abstract_inverted_index.labels | 114 |
| abstract_inverted_index.manual | 33, 113, 148 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.models | 30 |
| abstract_inverted_index.public | 127 |
| abstract_inverted_index.value. | 121 |
| abstract_inverted_index.weakly | 54 |
| abstract_inverted_index.weight | 120 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.method. | 85 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.network | 52, 104 |
| abstract_inverted_index.samples | 93 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Firstly, | 61 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.accuracy | 137 |
| abstract_inverted_index.achieves | 134 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.assigned | 116 |
| abstract_inverted_index.combined | 81 |
| abstract_inverted_index.datasets | 128 |
| abstract_inverted_index.existing | 14 |
| abstract_inverted_index.generate | 71 |
| abstract_inverted_index.learning | 16, 29 |
| abstract_inverted_index.methods, | 142 |
| abstract_inverted_index.problem, | 43 |
| abstract_inverted_index.proposed | 132 |
| abstract_inverted_index.proposes | 46 |
| abstract_inverted_index.reducing | 143 |
| abstract_inverted_index.semantic | 18, 50 |
| abstract_inverted_index.training | 59, 108 |
| abstract_inverted_index.Automatic | 1 |
| abstract_inverted_index.automatic | 77 |
| abstract_inverted_index.detection | 3 |
| abstract_inverted_index.strategy, | 109 |
| abstract_inverted_index.strategy. | 60 |
| abstract_inverted_index.workload. | 150 |
| abstract_inverted_index.(DL)-based | 17 |
| abstract_inverted_index.annotation | 149 |
| abstract_inverted_index.classifier | 65 |
| abstract_inverted_index.comparable | 136 |
| abstract_inverted_index.facilities | 6 |
| abstract_inverted_index.integrated | 88 |
| abstract_inverted_index.supervised | 28, 55, 141 |
| abstract_inverted_index.annotation, | 34 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.mixed-label | 58, 107 |
| abstract_inverted_index.patch-level | 64 |
| abstract_inverted_index.pixel-level | 32 |
| abstract_inverted_index.construction | 5 |
| abstract_inverted_index.experimental | 123 |
| abstract_inverted_index.localization | 74 |
| abstract_inverted_index.segmentation | 19, 51, 103 |
| abstract_inverted_index.time-consuming | 37 |
| abstract_inverted_index.pseudo-labeling | 78 |
| abstract_inverted_index.labor-intensive. | 39 |
| abstract_inverted_index.manual-annotated | 92 |
| abstract_inverted_index.pseudo-annotated | 90 |
| abstract_inverted_index.thresholding-based | 84 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.53048358 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |