Automatic detection of simulated artifacts on T1w magnetic resonance images: comparing performance of different QC strategies Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.10.31.25339144
The reliability of MRI-derived measures critically depends on image quality. Poor-quality scans can obscure anatomical detail and compromise the accuracy of automated image analysis, underscoring the need for robust quality control (QC) procedures. Automated QC offers scalability for large neuroimaging datasets, yet the comparative performance of different approaches for detecting specific artifact types remains poorly understood. We systematically compared rule-based (RB), classical machine learning (ML), and deep learning (DL) QC algorithms using 1,000 high-quality T1w scans. Four artifact types, blurring, ghosting, motion, and noise were synthetically introduced across ten severity levels using TorchIO, yielding 40,000 degraded images. Visual QC of a subset confirmed strong inter-rater reliability (Krippendorff’s α=0.82, mean Spearman’s ρ=0.87). RB and ML models used 62 image quality metrics (IQMs) from MRIQC, whereas DL models were trained directly on minimally preprocessed images. Models were trained with participant-level five-fold cross-validation and tested on an independent dataset. DL models achieved the highest overall performance across artifact types (Youden’s Index=0.83–0.97). RB and ML performed comparably at high artifact severities (YI≥0.75) but showed limited sensitivity to subtle ghosting and noise (YI≤0.15). Feature analysis indicated that RB relied primarily on normative metrics, whereas ML flexibly adapted feature use by artifact type and severity. These findings highlight DL’s superior generalizability for detecting subtle artifacts and provide practical guidance for selecting QC strategies in large-scale neuroimaging pipelines, where reliable QC is essential for maintaining statistical power and reproducibility.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.10.31.25339144
- https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdf
- OA Status
- green
- References
- 42
- OpenAlex ID
- https://openalex.org/W4415782074
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415782074Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.10.31.25339144Digital Object Identifier
- Title
-
Automatic detection of simulated artifacts on T1w magnetic resonance images: comparing performance of different QC strategiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-02Full publication date if available
- Authors
-
Janine Hendriks, Michelle G. Jansen, Richard Joules, Óscar Peña‐Nogales, Paulo Rodrigues, Frederik Barkhof, Anouk Schrantee, Henk MutsaertsList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.10.31.25339144Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
42Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415782074 |
|---|---|
| doi | https://doi.org/10.1101/2025.10.31.25339144 |
| ids.doi | https://doi.org/10.1101/2025.10.31.25339144 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41282830 |
| ids.openalex | https://openalex.org/W4415782074 |
| fwci | |
| type | preprint |
| title | Automatic detection of simulated artifacts on T1w magnetic resonance images: comparing performance of different QC strategies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1101/2025.10.31.25339144 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.10.31.25339144 |
| locations[1].id | pmid:41282830 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | medRxiv : the preprint server for health sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41282830 |
| locations[2].id | pmh:oai:europepmc.org:11443792 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12636670 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5078787618 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-3871-1825 |
| authorships[0].author.display_name | Janine Hendriks |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210151833 |
| authorships[0].affiliations[0].raw_affiliation_string | Amsterdam UMC |
| authorships[0].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[0].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Janine Hendriks |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Amsterdam UMC |
| authorships[1].author.id | https://openalex.org/A5046065878 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1244-5715 |
| authorships[1].author.display_name | Michelle G. Jansen |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210151833 |
| authorships[1].affiliations[0].raw_affiliation_string | Amsterdam UMC |
| authorships[1].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[1].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michelle Jansen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amsterdam UMC |
| authorships[2].author.id | https://openalex.org/A5084151437 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Richard Joules |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210096995 |
| authorships[2].affiliations[0].raw_affiliation_string | IXICO plc. |
| authorships[2].institutions[0].id | https://openalex.org/I4210096995 |
| authorships[2].institutions[0].ror | https://ror.org/00paezp73 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210096995 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Ixico (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Richard Joules |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IXICO plc. |
| authorships[3].author.id | https://openalex.org/A5050934244 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7364-9335 |
| authorships[3].author.display_name | Óscar Peña‐Nogales |
| authorships[3].affiliations[0].raw_affiliation_string | QMENTA Inc. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Óscar Peña-Nogales |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | QMENTA Inc. |
| authorships[4].author.id | https://openalex.org/A5103100326 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2102-1746 |
| authorships[4].author.display_name | Paulo Rodrigues |
| authorships[4].affiliations[0].raw_affiliation_string | QMENTA Inc. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Paulo R. Rodrigues |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | QMENTA Inc. |
| authorships[5].author.id | https://openalex.org/A5064378373 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3543-3706 |
| authorships[5].author.display_name | Frederik Barkhof |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210151833 |
| authorships[5].affiliations[0].raw_affiliation_string | Amsterdam UMC |
| authorships[5].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[5].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Frederik Barkhof |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Amsterdam UMC |
| authorships[6].author.id | https://openalex.org/A5010718326 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4035-4845 |
| authorships[6].author.display_name | Anouk Schrantee |
| authorships[6].countries | NL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210151833 |
| authorships[6].affiliations[0].raw_affiliation_string | Amsterdam UMC |
| authorships[6].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[6].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[6].institutions[0].country_code | NL |
| authorships[6].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Anouk Schrantee |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Amsterdam UMC |
| authorships[7].author.id | https://openalex.org/A5040266732 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0894-0307 |
| authorships[7].author.display_name | Henk Mutsaerts |
| authorships[7].countries | NL |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210151833 |
| authorships[7].affiliations[0].raw_affiliation_string | Amsterdam UMC |
| authorships[7].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[7].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[7].institutions[0].country_code | NL |
| authorships[7].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Henk J.M.M. Mutsaerts |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Amsterdam UMC |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-03T00:00:00 |
| display_name | Automatic detection of simulated artifacts on T1w magnetic resonance images: comparing performance of different QC strategies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T23:17:08.748858 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2025.10.31.25339144 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.10.31.25339144 |
| primary_location.id | doi:10.1101/2025.10.31.25339144 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.31.25339144.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.10.31.25339144 |
| publication_date | 2025-11-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2886368623, https://openalex.org/W2310662295, https://openalex.org/W2607804943, https://openalex.org/W1970928383, https://openalex.org/W4410023621, https://openalex.org/W4324087989, https://openalex.org/W3198779240, https://openalex.org/W2117140276, https://openalex.org/W2091158613, https://openalex.org/W3134090113, https://openalex.org/W4312070655, https://openalex.org/W2056132907, https://openalex.org/W4389297287, https://openalex.org/W4285097303, https://openalex.org/W4402457300, https://openalex.org/W2977883299, https://openalex.org/W4319459215, https://openalex.org/W2952043257, https://openalex.org/W2968250246, https://openalex.org/W4210764005, https://openalex.org/W2031224239, https://openalex.org/W2067018983, https://openalex.org/W4367853078, https://openalex.org/W2900954917, https://openalex.org/W2596674235, https://openalex.org/W2030309005, https://openalex.org/W2612070057, https://openalex.org/W3012412627, https://openalex.org/W835042205, https://openalex.org/W2122328291, https://openalex.org/W1990134753, https://openalex.org/W2055132316, https://openalex.org/W2783148479, https://openalex.org/W2481518362, https://openalex.org/W1965918155, https://openalex.org/W2051461858, https://openalex.org/W4382563954, https://openalex.org/W2117340355, https://openalex.org/W4377861137, https://openalex.org/W2771414833, https://openalex.org/W4319160968, https://openalex.org/W2088667195 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 101 |
| abstract_inverted_index.62 | 117 |
| abstract_inverted_index.DL | 125, 147 |
| abstract_inverted_index.ML | 114, 161, 190 |
| abstract_inverted_index.QC | 35, 70, 99, 216, 224 |
| abstract_inverted_index.RB | 112, 159, 183 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.an | 144 |
| abstract_inverted_index.at | 164 |
| abstract_inverted_index.by | 195 |
| abstract_inverted_index.in | 218 |
| abstract_inverted_index.is | 225 |
| abstract_inverted_index.of | 3, 21, 46, 100 |
| abstract_inverted_index.on | 8, 130, 143, 186 |
| abstract_inverted_index.to | 173 |
| abstract_inverted_index.T1w | 75 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 17, 66, 83, 113, 141, 160, 176, 198, 210, 231 |
| abstract_inverted_index.but | 169 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 28, 38, 49, 206, 214, 227 |
| abstract_inverted_index.ten | 89 |
| abstract_inverted_index.the | 19, 26, 43, 150 |
| abstract_inverted_index.use | 194 |
| abstract_inverted_index.yet | 42 |
| abstract_inverted_index.(DL) | 69 |
| abstract_inverted_index.(QC) | 32 |
| abstract_inverted_index.Four | 77 |
| abstract_inverted_index.deep | 67 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.high | 165 |
| abstract_inverted_index.mean | 109 |
| abstract_inverted_index.need | 27 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.type | 197 |
| abstract_inverted_index.used | 116 |
| abstract_inverted_index.were | 85, 127, 135 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.(ML), | 65 |
| abstract_inverted_index.(RB), | 61 |
| abstract_inverted_index.1,000 | 73 |
| abstract_inverted_index.These | 200 |
| abstract_inverted_index.image | 9, 23, 118 |
| abstract_inverted_index.large | 39 |
| abstract_inverted_index.noise | 84, 177 |
| abstract_inverted_index.power | 230 |
| abstract_inverted_index.scans | 12 |
| abstract_inverted_index.types | 53, 156 |
| abstract_inverted_index.using | 72, 92 |
| abstract_inverted_index.where | 222 |
| abstract_inverted_index.(IQMs) | 121 |
| abstract_inverted_index.40,000 | 95 |
| abstract_inverted_index.DL’s | 203 |
| abstract_inverted_index.MRIQC, | 123 |
| abstract_inverted_index.Models | 134 |
| abstract_inverted_index.Visual | 98 |
| abstract_inverted_index.across | 88, 154 |
| abstract_inverted_index.detail | 16 |
| abstract_inverted_index.levels | 91 |
| abstract_inverted_index.models | 115, 126, 148 |
| abstract_inverted_index.offers | 36 |
| abstract_inverted_index.poorly | 55 |
| abstract_inverted_index.relied | 184 |
| abstract_inverted_index.robust | 29 |
| abstract_inverted_index.scans. | 76 |
| abstract_inverted_index.showed | 170 |
| abstract_inverted_index.strong | 104 |
| abstract_inverted_index.subset | 102 |
| abstract_inverted_index.subtle | 174, 208 |
| abstract_inverted_index.tested | 142 |
| abstract_inverted_index.types, | 79 |
| abstract_inverted_index.Feature | 179 |
| abstract_inverted_index.adapted | 192 |
| abstract_inverted_index.control | 31 |
| abstract_inverted_index.depends | 7 |
| abstract_inverted_index.feature | 193 |
| abstract_inverted_index.highest | 151 |
| abstract_inverted_index.images. | 97, 133 |
| abstract_inverted_index.limited | 171 |
| abstract_inverted_index.machine | 63 |
| abstract_inverted_index.metrics | 120 |
| abstract_inverted_index.motion, | 82 |
| abstract_inverted_index.obscure | 14 |
| abstract_inverted_index.overall | 152 |
| abstract_inverted_index.provide | 211 |
| abstract_inverted_index.quality | 30, 119 |
| abstract_inverted_index.remains | 54 |
| abstract_inverted_index.trained | 128, 136 |
| abstract_inverted_index.whereas | 124, 189 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.TorchIO, | 93 |
| abstract_inverted_index.accuracy | 20 |
| abstract_inverted_index.achieved | 149 |
| abstract_inverted_index.analysis | 180 |
| abstract_inverted_index.artifact | 52, 78, 155, 166, 196 |
| abstract_inverted_index.compared | 59 |
| abstract_inverted_index.dataset. | 146 |
| abstract_inverted_index.degraded | 96 |
| abstract_inverted_index.directly | 129 |
| abstract_inverted_index.findings | 201 |
| abstract_inverted_index.flexibly | 191 |
| abstract_inverted_index.ghosting | 175 |
| abstract_inverted_index.guidance | 213 |
| abstract_inverted_index.learning | 64, 68 |
| abstract_inverted_index.measures | 5 |
| abstract_inverted_index.metrics, | 188 |
| abstract_inverted_index.quality. | 10 |
| abstract_inverted_index.reliable | 223 |
| abstract_inverted_index.severity | 90 |
| abstract_inverted_index.specific | 51 |
| abstract_inverted_index.superior | 204 |
| abstract_inverted_index.yielding | 94 |
| abstract_inverted_index.α=0.82, | 108 |
| abstract_inverted_index.Automated | 34 |
| abstract_inverted_index.analysis, | 24 |
| abstract_inverted_index.artifacts | 209 |
| abstract_inverted_index.automated | 22 |
| abstract_inverted_index.blurring, | 80 |
| abstract_inverted_index.classical | 62 |
| abstract_inverted_index.confirmed | 103 |
| abstract_inverted_index.datasets, | 41 |
| abstract_inverted_index.detecting | 50, 207 |
| abstract_inverted_index.different | 47 |
| abstract_inverted_index.essential | 226 |
| abstract_inverted_index.five-fold | 139 |
| abstract_inverted_index.ghosting, | 81 |
| abstract_inverted_index.highlight | 202 |
| abstract_inverted_index.indicated | 181 |
| abstract_inverted_index.minimally | 131 |
| abstract_inverted_index.normative | 187 |
| abstract_inverted_index.performed | 162 |
| abstract_inverted_index.practical | 212 |
| abstract_inverted_index.primarily | 185 |
| abstract_inverted_index.selecting | 215 |
| abstract_inverted_index.severity. | 199 |
| abstract_inverted_index.ρ=0.87). | 111 |
| abstract_inverted_index.algorithms | 71 |
| abstract_inverted_index.anatomical | 15 |
| abstract_inverted_index.approaches | 48 |
| abstract_inverted_index.comparably | 163 |
| abstract_inverted_index.compromise | 18 |
| abstract_inverted_index.critically | 6 |
| abstract_inverted_index.introduced | 87 |
| abstract_inverted_index.pipelines, | 221 |
| abstract_inverted_index.rule-based | 60 |
| abstract_inverted_index.severities | 167 |
| abstract_inverted_index.strategies | 217 |
| abstract_inverted_index.(YI≥0.75) | 168 |
| abstract_inverted_index.(Youden’s | 157 |
| abstract_inverted_index.MRI-derived | 4 |
| abstract_inverted_index.comparative | 44 |
| abstract_inverted_index.independent | 145 |
| abstract_inverted_index.inter-rater | 105 |
| abstract_inverted_index.large-scale | 219 |
| abstract_inverted_index.maintaining | 228 |
| abstract_inverted_index.performance | 45, 153 |
| abstract_inverted_index.procedures. | 33 |
| abstract_inverted_index.reliability | 2, 106 |
| abstract_inverted_index.scalability | 37 |
| abstract_inverted_index.sensitivity | 172 |
| abstract_inverted_index.statistical | 229 |
| abstract_inverted_index.understood. | 56 |
| abstract_inverted_index.(YI≤0.15). | 178 |
| abstract_inverted_index.Poor-quality | 11 |
| abstract_inverted_index.Spearman’s | 110 |
| abstract_inverted_index.high-quality | 74 |
| abstract_inverted_index.neuroimaging | 40, 220 |
| abstract_inverted_index.preprocessed | 132 |
| abstract_inverted_index.underscoring | 25 |
| abstract_inverted_index.synthetically | 86 |
| abstract_inverted_index.systematically | 58 |
| abstract_inverted_index.cross-validation | 140 |
| abstract_inverted_index.generalizability | 205 |
| abstract_inverted_index.reproducibility. | 232 |
| abstract_inverted_index.(Krippendorff’s | 107 |
| abstract_inverted_index.participant-level | 138 |
| abstract_inverted_index.Index=0.83–0.97). | 158 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5078787618 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210151833 |
| citation_normalized_percentile |