Automatic Estimation for Visual Quality Changes of Street Space via Street-View Images and Multimodal Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3408843
Estimating Visual Quality of Street Space (VQoSS) is pivotal for urban design, environmental sustainability, civic engagement, etc. Recent advancements, notably in deep learning, have enabled large-scale analysis. However, traditional deep learning approaches are hampered by extensive data annotation requirements and limited adaptability across diverse VQoSS tasks. Multimodal Large Language Models (MLLMs) have recently demonstrated proficiency in various computer vision tasks, positioning them as promising tools for automated VQoSS assessment. In this paper, we pioneer the application of MLLMs to VQoSS change estimation, with our empirical findings affirming their effectiveness. In addition, we introduce Street Quality Generative Pre-trained Transformer (SQ-GPT), a model that distills knowledge from the current most powerful but inaccessible (not free) GPT-4V, requiring no human efforts. SQ-GPT approaches GPT-4V’s performance and is viable for large-scale VQoSS change estimation. In a case study of Nanjing, we showcase the practicality of SQ-GPT and knowledge distillation pipeline. Our work promises to be a valuable asset for future urban studies research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3408843
- OA Status
- gold
- Cited By
- 15
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399310967
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399310967Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3408843Digital Object Identifier
- Title
-
Automatic Estimation for Visual Quality Changes of Street Space via Street-View Images and Multimodal Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Hao Liang, Jiaxin Zhang, Yunqin Li, Bowen Wang, Jingyong HuangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3408843Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3408843Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligence, Quality (philosophy), Data science, Human–computer interaction, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399310967 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3408843 |
| ids.doi | https://doi.org/10.1109/access.2024.3408843 |
| ids.openalex | https://openalex.org/W4399310967 |
| fwci | 8.43938124 |
| type | article |
| title | Automatic Estimation for Visual Quality Changes of Street Space via Street-View Images and Multimodal Large Language Models |
| awards[0].id | https://openalex.org/G5312267079 |
| awards[0].funder_id | https://openalex.org/F4320314366 |
| awards[0].display_name | |
| awards[0].funder_award_id | JD23003 |
| awards[0].funder_display_name | Federation for the Humanities and Social Sciences |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 87727 |
| biblio.first_page | 87713 |
| topics[0].id | https://openalex.org/T13890 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.982200026512146 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Remote Sensing and Land Use |
| topics[1].id | https://openalex.org/T10226 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9703999757766724 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Land Use and Ecosystem Services |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| funders[0].id | https://openalex.org/F4320314366 |
| funders[0].ror | https://ror.org/00y8ab321 |
| funders[0].display_name | Federation for the Humanities and Social Sciences |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8213560581207275 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.543773353099823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5428872108459473 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779530757 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4313858151435852 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[3].display_name | Quality (philosophy) |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.41918909549713135 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35199880599975586 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C111472728 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[6].display_name | Epistemology |
| concepts[7].id | https://openalex.org/C138885662 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[7].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8213560581207275 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.543773353099823 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5428872108459473 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/quality |
| keywords[3].score | 0.4313858151435852 |
| keywords[3].display_name | Quality (philosophy) |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.41918909549713135 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.35199880599975586 |
| keywords[5].display_name | Human–computer interaction |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3408843 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3408843 |
| locations[1].id | pmh:oai:doaj.org/article:a91ec2962f824126b87908a24f48bab5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 87713-87727 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/a91ec2962f824126b87908a24f48bab5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100458833 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7201-372X |
| authorships[0].author.display_name | Hao Liang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I167027274 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Landscape Architecture, Nanjing Forestry University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I167027274 |
| authorships[0].institutions[0].ror | https://ror.org/03m96p165 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I167027274 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Forestry University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Landscape Architecture, Nanjing Forestry University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5100414871 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6330-6723 |
| authorships[1].author.display_name | Jiaxin Zhang |
| authorships[1].countries | CN, JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[1].affiliations[0].raw_affiliation_string | Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I141649914 |
| authorships[1].affiliations[1].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[1].institutions[0].id | https://openalex.org/I141649914 |
| authorships[1].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanchang University |
| authorships[1].institutions[1].id | https://openalex.org/I98285908 |
| authorships[1].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[1].institutions[1].country_code | JP |
| authorships[1].institutions[1].display_name | The University of Osaka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiaxin Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China, Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[2].author.id | https://openalex.org/A5048679031 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1886-0477 |
| authorships[2].author.display_name | Yunqin Li |
| authorships[2].countries | CN, JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[2].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I98285908 |
| authorships[2].affiliations[1].raw_affiliation_string | Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I141649914 |
| authorships[2].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanchang University |
| authorships[2].institutions[1].id | https://openalex.org/I98285908 |
| authorships[2].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[2].institutions[1].country_code | JP |
| authorships[2].institutions[1].display_name | The University of Osaka |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunqin Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China, Graduate School of Engineering, Division of Sustainable Energy and Environmental Engineering, Osaka University, Osaka, Japan |
| authorships[3].author.id | https://openalex.org/A5100412545 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2911-5595 |
| authorships[3].author.display_name | Bowen Wang |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[3].affiliations[0].raw_affiliation_string | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I98285908 |
| authorships[3].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | The University of Osaka |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bowen Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka, Japan |
| authorships[4].author.id | https://openalex.org/A5103959151 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-2955-1284 |
| authorships[4].author.display_name | Jingyong Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[4].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China |
| authorships[4].institutions[0].id | https://openalex.org/I141649914 |
| authorships[4].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanchang University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jingyong Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3408843 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic Estimation for Visual Quality Changes of Street Space via Street-View Images and Multimodal Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13890 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.982200026512146 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Remote Sensing and Land Use |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3408843 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3408843 |
| primary_location.id | doi:10.1109/access.2024.3408843 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3408843 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3157547930, https://openalex.org/W2897941920, https://openalex.org/W4385065008, https://openalex.org/W3087045115, https://openalex.org/W2895762794, https://openalex.org/W4383112704, https://openalex.org/W2986849632, https://openalex.org/W3195494505, https://openalex.org/W4224984016, https://openalex.org/W2176673053, https://openalex.org/W3022140654, https://openalex.org/W2919115771, https://openalex.org/W2986507446, https://openalex.org/W4294347834, https://openalex.org/W2165698076, https://openalex.org/W2887280559, https://openalex.org/W3186392065, https://openalex.org/W4226178187, https://openalex.org/W4210553154, https://openalex.org/W6851775633, https://openalex.org/W6852989508, https://openalex.org/W3135090521, https://openalex.org/W6849177959, https://openalex.org/W6852776751, https://openalex.org/W6851592950, https://openalex.org/W6851950068, https://openalex.org/W6850668563, https://openalex.org/W3177196641, https://openalex.org/W3034368386, https://openalex.org/W4310066864, https://openalex.org/W4211119591, https://openalex.org/W4306981601, https://openalex.org/W3030624209, https://openalex.org/W4382752075, https://openalex.org/W4392435044, https://openalex.org/W4386071596, https://openalex.org/W2030437556, https://openalex.org/W4294619561, https://openalex.org/W2963881378, https://openalex.org/W3202938484, https://openalex.org/W3160915774, https://openalex.org/W2947698013, https://openalex.org/W2770820547, https://openalex.org/W2619383789, https://openalex.org/W6853116092, https://openalex.org/W6851948999, https://openalex.org/W6852489829, https://openalex.org/W6852667213, https://openalex.org/W6852447913, https://openalex.org/W6796581206, https://openalex.org/W6855815363, https://openalex.org/W4389455500, https://openalex.org/W6791353385, https://openalex.org/W6859578386, https://openalex.org/W6847413556, https://openalex.org/W1861492603, https://openalex.org/W6853381761, https://openalex.org/W6861457850, https://openalex.org/W4385245566, https://openalex.org/W4361229539, https://openalex.org/W4362515116, https://openalex.org/W4390092730, https://openalex.org/W4360891289, https://openalex.org/W4378711593, https://openalex.org/W4404356490, https://openalex.org/W4385970122, https://openalex.org/W4318718936, https://openalex.org/W4376312115, https://openalex.org/W4385570412, https://openalex.org/W4367628410, https://openalex.org/W4376122449, https://openalex.org/W4390961147, https://openalex.org/W3138154797, https://openalex.org/W1538435250, https://openalex.org/W4376167553, https://openalex.org/W4366850747, https://openalex.org/W4379539933 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 99, 131, 151 |
| abstract_inverted_index.In | 69, 89, 130 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 20, 55 |
| abstract_inverted_index.is | 7, 123 |
| abstract_inverted_index.no | 115 |
| abstract_inverted_index.of | 3, 76, 134, 140 |
| abstract_inverted_index.to | 78, 149 |
| abstract_inverted_index.we | 72, 91, 136 |
| abstract_inverted_index.Our | 146 |
| abstract_inverted_index.and | 39, 122, 142 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.but | 109 |
| abstract_inverted_index.for | 9, 65, 125, 154 |
| abstract_inverted_index.our | 83 |
| abstract_inverted_index.the | 74, 105, 138 |
| abstract_inverted_index.(not | 111 |
| abstract_inverted_index.case | 132 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.deep | 21, 29 |
| abstract_inverted_index.etc. | 16 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.have | 23, 51 |
| abstract_inverted_index.most | 107 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.them | 61 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.work | 147 |
| abstract_inverted_index.Large | 47 |
| abstract_inverted_index.MLLMs | 77 |
| abstract_inverted_index.Space | 5 |
| abstract_inverted_index.VQoSS | 44, 67, 79, 127 |
| abstract_inverted_index.asset | 153 |
| abstract_inverted_index.civic | 14 |
| abstract_inverted_index.free) | 112 |
| abstract_inverted_index.human | 116 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.study | 133 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.tools | 64 |
| abstract_inverted_index.urban | 10, 156 |
| abstract_inverted_index.Models | 49 |
| abstract_inverted_index.Recent | 17 |
| abstract_inverted_index.SQ-GPT | 118, 141 |
| abstract_inverted_index.Street | 4, 93 |
| abstract_inverted_index.Visual | 1 |
| abstract_inverted_index.across | 42 |
| abstract_inverted_index.change | 80, 128 |
| abstract_inverted_index.future | 155 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.tasks, | 59 |
| abstract_inverted_index.tasks. | 45 |
| abstract_inverted_index.viable | 124 |
| abstract_inverted_index.vision | 58 |
| abstract_inverted_index.(MLLMs) | 50 |
| abstract_inverted_index.(VQoSS) | 6 |
| abstract_inverted_index.GPT-4V, | 113 |
| abstract_inverted_index.Quality | 2, 94 |
| abstract_inverted_index.current | 106 |
| abstract_inverted_index.design, | 11 |
| abstract_inverted_index.diverse | 43 |
| abstract_inverted_index.enabled | 24 |
| abstract_inverted_index.limited | 40 |
| abstract_inverted_index.notably | 19 |
| abstract_inverted_index.pioneer | 73 |
| abstract_inverted_index.pivotal | 8 |
| abstract_inverted_index.studies | 157 |
| abstract_inverted_index.various | 56 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.Language | 48 |
| abstract_inverted_index.Nanjing, | 135 |
| abstract_inverted_index.computer | 57 |
| abstract_inverted_index.distills | 102 |
| abstract_inverted_index.efforts. | 117 |
| abstract_inverted_index.findings | 85 |
| abstract_inverted_index.hampered | 33 |
| abstract_inverted_index.learning | 30 |
| abstract_inverted_index.powerful | 108 |
| abstract_inverted_index.promises | 148 |
| abstract_inverted_index.recently | 52 |
| abstract_inverted_index.showcase | 137 |
| abstract_inverted_index.valuable | 152 |
| abstract_inverted_index.(SQ-GPT), | 98 |
| abstract_inverted_index.addition, | 90 |
| abstract_inverted_index.affirming | 86 |
| abstract_inverted_index.analysis. | 26 |
| abstract_inverted_index.automated | 66 |
| abstract_inverted_index.empirical | 84 |
| abstract_inverted_index.extensive | 35 |
| abstract_inverted_index.introduce | 92 |
| abstract_inverted_index.knowledge | 103, 143 |
| abstract_inverted_index.learning, | 22 |
| abstract_inverted_index.pipeline. | 145 |
| abstract_inverted_index.promising | 63 |
| abstract_inverted_index.requiring | 114 |
| abstract_inverted_index.research. | 158 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.Generative | 95 |
| abstract_inverted_index.Multimodal | 46 |
| abstract_inverted_index.annotation | 37 |
| abstract_inverted_index.approaches | 31, 119 |
| abstract_inverted_index.Pre-trained | 96 |
| abstract_inverted_index.Transformer | 97 |
| abstract_inverted_index.application | 75 |
| abstract_inverted_index.assessment. | 68 |
| abstract_inverted_index.engagement, | 15 |
| abstract_inverted_index.estimation, | 81 |
| abstract_inverted_index.estimation. | 129 |
| abstract_inverted_index.large-scale | 25, 126 |
| abstract_inverted_index.performance | 121 |
| abstract_inverted_index.positioning | 60 |
| abstract_inverted_index.proficiency | 54 |
| abstract_inverted_index.traditional | 28 |
| abstract_inverted_index.adaptability | 41 |
| abstract_inverted_index.demonstrated | 53 |
| abstract_inverted_index.distillation | 144 |
| abstract_inverted_index.inaccessible | 110 |
| abstract_inverted_index.practicality | 139 |
| abstract_inverted_index.requirements | 38 |
| abstract_inverted_index.advancements, | 18 |
| abstract_inverted_index.environmental | 12 |
| abstract_inverted_index.effectiveness. | 88 |
| abstract_inverted_index.GPT-4V’s | 120 |
| abstract_inverted_index.sustainability, | 13 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.98277925 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |