Automatic Estimation for Visual Quality Changes of Street Space Via Street-View Images and Multimodal Large Language Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202311.1473.v1
Estimating Visual Quality of Street Space (VQoSS) is pivotal for urban design, environmental sustainability, civic engagement, etc. Recent advancements, notably in deep learning, have enabled large-scale analysis. However, traditional deep learning approaches are hampered by extensive data annotation requirements and limited adaptability across diverse VQoSS tasks. Multimodal Large Language Models (MLLMs) have recently demonstrated proficiency in various computer vision tasks, positioning them as promising tools for automated VQoSS assessment. In this paper, we pioneer the application of MLLMs to VQoSS change estimation, with our empirical findings affirming their effectiveness. In addition, we introduce Street Quality GPT (SQ-GPT), a model that distills knowledge from the current most powerful but inaccessible (not free) GPT-4, requiring no human efforts. SQ-GPT approaches GPT-4’s performance and is viable for large-scale VQoSS change estimation. In a case study of Nanjin, we showcase the practicality of SQ-GPT and knowledge distillation pipeline. Our work promises to be a valuable asset for future urban studies research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202311.1473.v1
- https://www.preprints.org/manuscript/202311.1473/v1/download
- OA Status
- green
- Cited By
- 2
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388960531
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388960531Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202311.1473.v1Digital Object Identifier
- Title
-
Automatic Estimation for Visual Quality Changes of Street Space Via Street-View Images and Multimodal Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-23Full publication date if available
- Authors
-
Hao Liang, Jiaxin Zhang, Yunqin Li, Zehong Zhu, Bowen WangList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202311.1473.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202311.1473/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202311.1473/v1/downloadDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Pipeline (software), Machine learning, Quality (philosophy), Scale (ratio), Estimation, Data science, Adaptability, Asset (computer security), Sustainability, Annotation, Deep learning, Human–computer interaction, Systems engineering, Engineering, Computer security, Cartography, Geography, Biology, Programming language, Philosophy, Ecology, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388960531 |
|---|---|
| doi | https://doi.org/10.20944/preprints202311.1473.v1 |
| ids.doi | https://doi.org/10.20944/preprints202311.1473.v1 |
| ids.openalex | https://openalex.org/W4388960531 |
| fwci | 0.43112945 |
| type | preprint |
| title | Automatic Estimation for Visual Quality Changes of Street Space Via Street-View Images and Multimodal Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13890 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9459999799728394 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Remote Sensing and Land Use |
| topics[1].id | https://openalex.org/T13955 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9110000133514404 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2302 |
| topics[1].subfield.display_name | Ecological Modeling |
| topics[1].display_name | Evaluation Methods in Various Fields |
| topics[2].id | https://openalex.org/T10226 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9072999954223633 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Land Use and Ecosystem Services |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7307319641113281 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5576857924461365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5417003035545349 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.52496737241745 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C2779530757 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5178301930427551 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[4].display_name | Quality (philosophy) |
| concepts[5].id | https://openalex.org/C2778755073 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4903290569782257 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[5].display_name | Scale (ratio) |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47436079382896423 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C2522767166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4617806375026703 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[7].display_name | Data science |
| concepts[8].id | https://openalex.org/C177606310 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4454701840877533 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5674297 |
| concepts[8].display_name | Adaptability |
| concepts[9].id | https://openalex.org/C76178495 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43202877044677734 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4808784 |
| concepts[9].display_name | Asset (computer security) |
| concepts[10].id | https://openalex.org/C66204764 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4316655993461609 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q219416 |
| concepts[10].display_name | Sustainability |
| concepts[11].id | https://openalex.org/C2776321320 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4260074496269226 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[11].display_name | Annotation |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41420865058898926 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C107457646 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3291012942790985 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[13].display_name | Human–computer interaction |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19918930530548096 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13171342015266418 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.13073095679283142 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C58640448 |
| concepts[17].level | 1 |
| concepts[17].score | 0.10071316361427307 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[17].display_name | Cartography |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0928335189819336 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C18903297 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[22].display_name | Ecology |
| concepts[23].id | https://openalex.org/C111472728 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[23].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7307319641113281 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5576857924461365 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.5417003035545349 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.52496737241745 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/quality |
| keywords[4].score | 0.5178301930427551 |
| keywords[4].display_name | Quality (philosophy) |
| keywords[5].id | https://openalex.org/keywords/scale |
| keywords[5].score | 0.4903290569782257 |
| keywords[5].display_name | Scale (ratio) |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.47436079382896423 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/data-science |
| keywords[7].score | 0.4617806375026703 |
| keywords[7].display_name | Data science |
| keywords[8].id | https://openalex.org/keywords/adaptability |
| keywords[8].score | 0.4454701840877533 |
| keywords[8].display_name | Adaptability |
| keywords[9].id | https://openalex.org/keywords/asset |
| keywords[9].score | 0.43202877044677734 |
| keywords[9].display_name | Asset (computer security) |
| keywords[10].id | https://openalex.org/keywords/sustainability |
| keywords[10].score | 0.4316655993461609 |
| keywords[10].display_name | Sustainability |
| keywords[11].id | https://openalex.org/keywords/annotation |
| keywords[11].score | 0.4260074496269226 |
| keywords[11].display_name | Annotation |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.41420865058898926 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[13].score | 0.3291012942790985 |
| keywords[13].display_name | Human–computer interaction |
| keywords[14].id | https://openalex.org/keywords/systems-engineering |
| keywords[14].score | 0.19918930530548096 |
| keywords[14].display_name | Systems engineering |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.13171342015266418 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/computer-security |
| keywords[16].score | 0.13073095679283142 |
| keywords[16].display_name | Computer security |
| keywords[17].id | https://openalex.org/keywords/cartography |
| keywords[17].score | 0.10071316361427307 |
| keywords[17].display_name | Cartography |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.0928335189819336 |
| keywords[18].display_name | Geography |
| language | en |
| locations[0].id | doi:10.20944/preprints202311.1473.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202311.1473/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202311.1473.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101459887 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1051-6129 |
| authorships[0].author.display_name | Hao Liang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I167027274 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; |
| authorships[0].institutions[0].id | https://openalex.org/I167027274 |
| authorships[0].institutions[0].ror | https://ror.org/03m96p165 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I167027274 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Forestry University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; |
| authorships[1].author.id | https://openalex.org/A5100414871 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6330-6723 |
| authorships[1].author.display_name | Jiaxin Zhang |
| authorships[1].countries | CN, JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I141649914 |
| authorships[1].affiliations[1].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China; |
| authorships[1].institutions[0].id | https://openalex.org/I141649914 |
| authorships[1].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanchang University |
| authorships[1].institutions[1].id | https://openalex.org/I98285908 |
| authorships[1].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[1].institutions[1].country_code | JP |
| authorships[1].institutions[1].display_name | The University of Osaka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiaxin Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China;, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan |
| authorships[2].author.id | https://openalex.org/A5048679031 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1886-0477 |
| authorships[2].author.display_name | Yunqin Li |
| authorships[2].countries | CN, JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[2].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China; |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I98285908 |
| authorships[2].affiliations[1].raw_affiliation_string | Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I141649914 |
| authorships[2].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanchang University |
| authorships[2].institutions[1].id | https://openalex.org/I98285908 |
| authorships[2].institutions[1].ror | https://ror.org/035t8zc32 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I98285908 |
| authorships[2].institutions[1].country_code | JP |
| authorships[2].institutions[1].display_name | The University of Osaka |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunqin Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China;, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan |
| authorships[3].author.id | https://openalex.org/A5104202319 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zehong Zhu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141649914 |
| authorships[3].affiliations[0].raw_affiliation_string | Architecture and design college, Nanchang University, Nanchang, China; |
| authorships[3].institutions[0].id | https://openalex.org/I141649914 |
| authorships[3].institutions[0].ror | https://ror.org/042v6xz23 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141649914 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanchang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zehong Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Architecture and design college, Nanchang University, Nanchang, China; |
| authorships[4].author.id | https://openalex.org/A5100412545 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2911-5595 |
| authorships[4].author.display_name | Bowen Wang |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[4].affiliations[0].raw_affiliation_string | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka 565-0871, Japan; |
| authorships[4].institutions[0].id | https://openalex.org/I98285908 |
| authorships[4].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | The University of Osaka |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bowen Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Science and Technology, Graduate School of Information, Osaka University, 1-1, Yamadaoka, Osaka 565-0871, Japan; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202311.1473/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic Estimation for Visual Quality Changes of Street Space Via Street-View Images and Multimodal Large Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13890 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9459999799728394 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Remote Sensing and Land Use |
| related_works | https://openalex.org/W2357124094, https://openalex.org/W2387399993, https://openalex.org/W2389739210, https://openalex.org/W2348924972, https://openalex.org/W2365736347, https://openalex.org/W2047454415, https://openalex.org/W2070040999, https://openalex.org/W2387293848, https://openalex.org/W3121791438, https://openalex.org/W2250140200 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202311.1473.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202311.1473/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202311.1473.v1 |
| primary_location.id | doi:10.20944/preprints202311.1473.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202311.1473/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202311.1473.v1 |
| publication_date | 2023-11-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6632198321, https://openalex.org/W4388960531, https://openalex.org/W4200320221, https://openalex.org/W4205902690, https://openalex.org/W4210553154, https://openalex.org/W6600445788, https://openalex.org/W6604033587, https://openalex.org/W6600234944, https://openalex.org/W6601897980, https://openalex.org/W6600008909, https://openalex.org/W4240153047, https://openalex.org/W2985529195, https://openalex.org/W2883699282, https://openalex.org/W4382752075, https://openalex.org/W6600651459, https://openalex.org/W1676314349, https://openalex.org/W1987027200, https://openalex.org/W6604801084, https://openalex.org/W6819521833, https://openalex.org/W6601804787, https://openalex.org/W6604285789, https://openalex.org/W6606084162, https://openalex.org/W2947698013, https://openalex.org/W4211119591, https://openalex.org/W4360891289, https://openalex.org/W4366330503, https://openalex.org/W4310066864, https://openalex.org/W4385245566, https://openalex.org/W4385065008, https://openalex.org/W4318718936, https://openalex.org/W4361229539, https://openalex.org/W4306981601, https://openalex.org/W4285240403, https://openalex.org/W4226178187, https://openalex.org/W4378711593, https://openalex.org/W2986507446, https://openalex.org/W2770820547, https://openalex.org/W2165698076, https://openalex.org/W4379539933, https://openalex.org/W4366850747, https://openalex.org/W3022140654, https://openalex.org/W2030437556, https://openalex.org/W4387266933, https://openalex.org/W3195494505, https://openalex.org/W1538435250, https://openalex.org/W3154971402, https://openalex.org/W3087045115, https://openalex.org/W4385970122, https://openalex.org/W4385570412, https://openalex.org/W2895762794, https://openalex.org/W4387209455, https://openalex.org/W4376122449, https://openalex.org/W3030624209, https://openalex.org/W2619383789, https://openalex.org/W4367628410, https://openalex.org/W3157547930, https://openalex.org/W2986849632, https://openalex.org/W3202938484, https://openalex.org/W4376167553, https://openalex.org/W3034368386, https://openalex.org/W2887280559, https://openalex.org/W4294619561, https://openalex.org/W4362515116, https://openalex.org/W4376312115, https://openalex.org/W4382132560, https://openalex.org/W2176673053 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 97, 129, 149 |
| abstract_inverted_index.In | 69, 89, 128 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.be | 148 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 20, 55 |
| abstract_inverted_index.is | 7, 121 |
| abstract_inverted_index.no | 113 |
| abstract_inverted_index.of | 3, 76, 132, 138 |
| abstract_inverted_index.to | 78, 147 |
| abstract_inverted_index.we | 72, 91, 134 |
| abstract_inverted_index.GPT | 95 |
| abstract_inverted_index.Our | 144 |
| abstract_inverted_index.and | 39, 120, 140 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.but | 107 |
| abstract_inverted_index.for | 9, 65, 123, 152 |
| abstract_inverted_index.our | 83 |
| abstract_inverted_index.the | 74, 103, 136 |
| abstract_inverted_index.(not | 109 |
| abstract_inverted_index.case | 130 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.deep | 21, 29 |
| abstract_inverted_index.etc. | 16 |
| abstract_inverted_index.from | 102 |
| abstract_inverted_index.have | 23, 51 |
| abstract_inverted_index.most | 105 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.them | 61 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.work | 145 |
| abstract_inverted_index.Large | 47 |
| abstract_inverted_index.MLLMs | 77 |
| abstract_inverted_index.Space | 5 |
| abstract_inverted_index.VQoSS | 44, 67, 79, 125 |
| abstract_inverted_index.asset | 151 |
| abstract_inverted_index.civic | 14 |
| abstract_inverted_index.free) | 110 |
| abstract_inverted_index.human | 114 |
| abstract_inverted_index.model | 98 |
| abstract_inverted_index.study | 131 |
| abstract_inverted_index.their | 87 |
| abstract_inverted_index.tools | 64 |
| abstract_inverted_index.urban | 10, 154 |
| abstract_inverted_index.GPT-4, | 111 |
| abstract_inverted_index.Models | 49 |
| abstract_inverted_index.Recent | 17 |
| abstract_inverted_index.SQ-GPT | 116, 139 |
| abstract_inverted_index.Street | 4, 93 |
| abstract_inverted_index.Visual | 1 |
| abstract_inverted_index.across | 42 |
| abstract_inverted_index.change | 80, 126 |
| abstract_inverted_index.future | 153 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.tasks, | 59 |
| abstract_inverted_index.tasks. | 45 |
| abstract_inverted_index.viable | 122 |
| abstract_inverted_index.vision | 58 |
| abstract_inverted_index.(MLLMs) | 50 |
| abstract_inverted_index.(VQoSS) | 6 |
| abstract_inverted_index.Nanjin, | 133 |
| abstract_inverted_index.Quality | 2, 94 |
| abstract_inverted_index.current | 104 |
| abstract_inverted_index.design, | 11 |
| abstract_inverted_index.diverse | 43 |
| abstract_inverted_index.enabled | 24 |
| abstract_inverted_index.limited | 40 |
| abstract_inverted_index.notably | 19 |
| abstract_inverted_index.pioneer | 73 |
| abstract_inverted_index.pivotal | 8 |
| abstract_inverted_index.studies | 155 |
| abstract_inverted_index.various | 56 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.Language | 48 |
| abstract_inverted_index.computer | 57 |
| abstract_inverted_index.distills | 100 |
| abstract_inverted_index.efforts. | 115 |
| abstract_inverted_index.findings | 85 |
| abstract_inverted_index.hampered | 33 |
| abstract_inverted_index.learning | 30 |
| abstract_inverted_index.powerful | 106 |
| abstract_inverted_index.promises | 146 |
| abstract_inverted_index.recently | 52 |
| abstract_inverted_index.showcase | 135 |
| abstract_inverted_index.valuable | 150 |
| abstract_inverted_index.(SQ-GPT), | 96 |
| abstract_inverted_index.GPT-4’s | 118 |
| abstract_inverted_index.addition, | 90 |
| abstract_inverted_index.affirming | 86 |
| abstract_inverted_index.analysis. | 26 |
| abstract_inverted_index.automated | 66 |
| abstract_inverted_index.empirical | 84 |
| abstract_inverted_index.extensive | 35 |
| abstract_inverted_index.introduce | 92 |
| abstract_inverted_index.knowledge | 101, 141 |
| abstract_inverted_index.learning, | 22 |
| abstract_inverted_index.pipeline. | 143 |
| abstract_inverted_index.promising | 63 |
| abstract_inverted_index.requiring | 112 |
| abstract_inverted_index.research. | 156 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.Multimodal | 46 |
| abstract_inverted_index.annotation | 37 |
| abstract_inverted_index.approaches | 31, 117 |
| abstract_inverted_index.application | 75 |
| abstract_inverted_index.assessment. | 68 |
| abstract_inverted_index.engagement, | 15 |
| abstract_inverted_index.estimation, | 81 |
| abstract_inverted_index.estimation. | 127 |
| abstract_inverted_index.large-scale | 25, 124 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.positioning | 60 |
| abstract_inverted_index.proficiency | 54 |
| abstract_inverted_index.traditional | 28 |
| abstract_inverted_index.adaptability | 41 |
| abstract_inverted_index.demonstrated | 53 |
| abstract_inverted_index.distillation | 142 |
| abstract_inverted_index.inaccessible | 108 |
| abstract_inverted_index.practicality | 137 |
| abstract_inverted_index.requirements | 38 |
| abstract_inverted_index.advancements, | 18 |
| abstract_inverted_index.environmental | 12 |
| abstract_inverted_index.effectiveness. | 88 |
| abstract_inverted_index.sustainability, | 13 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.65834948 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |