Automatic graph representation algorithm for heterogeneous catalysis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1063/5.0140487
One of the most appealing aspects of machine learning for material design is its high throughput exploration of chemical spaces, but to reach the ceiling of machine learning-aided exploration, more than current model architectures and processing algorithms are required. New architectures such as graph neural networks have seen significant research investments recently. For heterogeneous catalysis, defining substrate intramolecular bonds and adsorbate/substrate intermolecular bonds is a time-consuming and challenging process. Before applying a model, dataset pre-processing, node/bond descriptor design, and specific model constraints have to be considered. In this work, a framework designed to solve these issues is presented in the form of an automatic graph representation algorithm (AGRA) tool to extract the local chemical environment of metallic surface adsorption sites. This tool is able to gather multiple adsorption geometry datasets composed of different systems and combine them into a single model. To show AGRA’s excellent transferability and reduced computational cost compared to other graph representation methods, it was applied to five different catalytic reaction datasets and benchmarked against the Open Catalyst Projects graph representation method. The two oxygen reduction reaction (ORR) datasets with O/OH adsorbates obtained 0.053 eV root-mean-square deviation (RMSD) when combined together, whereas the three carbon dioxide reduction reaction datasets with CHO/CO/COOH obtained an average performance of 0.088 eV RMSD. To further display the algorithm’s versatility and extrapolation ability, a model was trained on a subset combination of all five datasets with an RMSD of 0.105 eV. This universal model was then used to predict a wide range of adsorption energies and an entirely new ORR catalyst system, which was then verified through density functional theory calculations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0140487
- https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383198477
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383198477Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0140487Digital Object Identifier
- Title
-
Automatic graph representation algorithm for heterogeneous catalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-05Full publication date if available
- Authors
-
Zachary Gariepy, Zhiwen Chen, Isaac Tamblyn, Chandra Veer Singh, Conrard Giresse Tetsassi FeugmoList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0140487Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdfDirect OA link when available
- Concepts
-
Computer science, Algorithm, Planarity testing, Graph, Theoretical computer science, Chemistry, CrystallographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383198477 |
|---|---|
| doi | https://doi.org/10.1063/5.0140487 |
| ids.doi | https://doi.org/10.1063/5.0140487 |
| ids.openalex | https://openalex.org/W4383198477 |
| fwci | 0.67007547 |
| type | article |
| title | Automatic graph representation algorithm for heterogeneous catalysis |
| biblio.issue | 3 |
| biblio.volume | 1 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10030 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9761999845504761 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Electrocatalysts for Energy Conversion |
| funders[0].id | https://openalex.org/F4320322676 |
| funders[0].ror | https://ror.org/01aff2v68 |
| funders[0].display_name | University of Waterloo |
| funders[1].id | https://openalex.org/F4320334601 |
| funders[1].ror | https://ror.org/04mte1k06 |
| funders[1].display_name | National Research Council Canada |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5523560047149658 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5510042309761047 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C68260962 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4832499623298645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7200967 |
| concepts[2].display_name | Planarity testing |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43298354744911194 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.26670128107070923 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2638792395591736 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C8010536 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[6].display_name | Crystallography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5523560047149658 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5510042309761047 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/planarity-testing |
| keywords[2].score | 0.4832499623298645 |
| keywords[2].display_name | Planarity testing |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.43298354744911194 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.26670128107070923 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.2638792395591736 |
| keywords[5].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1063/5.0140487 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387287287 |
| locations[0].source.issn | 2770-9019 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2770-9019 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | APL Machine Learning |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | APL Machine Learning |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0140487 |
| locations[1].id | pmh:oai:doaj.org/article:5d2a2c13a2f942668fa358d81e046e14 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | APL Machine Learning, Vol 1, Iss 3, Pp 036103-036103-8 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/5d2a2c13a2f942668fa358d81e046e14 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036390765 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-3545-7457 |
| authorships[0].author.display_name | Zachary Gariepy |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I185261750 |
| authorships[0].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachary Gariepy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada |
| authorships[1].author.id | https://openalex.org/A5048740895 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0155-2101 |
| authorships[1].author.display_name | Zhiwen Chen |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Mechanical and Industrial Engineering, University of Toronto 2 , Toronto, Ontario M5S 3E4, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I185261750 |
| authorships[1].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Toronto |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | ZhiWen Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada, Department of Mechanical and Industrial Engineering, University of Toronto 2 , Toronto, Ontario M5S 3E4, Canada |
| authorships[2].author.id | https://openalex.org/A5029833367 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8146-6667 |
| authorships[2].author.display_name | Isaac Tamblyn |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39470171 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Physics, Ontario Tech University 4 , Oshawa, Ontario K1N 6N5, Canada |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I153718931 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Physics, University of Ottawa 3 , Ottawa, Ontario M5S 3G8, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I39470171 |
| authorships[2].institutions[0].ror | https://ror.org/016zre027 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39470171 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Ontario Tech University |
| authorships[2].institutions[1].id | https://openalex.org/I153718931 |
| authorships[2].institutions[1].ror | https://ror.org/03c4mmv16 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I153718931 |
| authorships[2].institutions[1].country_code | CA |
| authorships[2].institutions[1].display_name | University of Ottawa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Isaac Tamblyn |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Physics, Ontario Tech University 4 , Oshawa, Ontario K1N 6N5, Canada, Department of Physics, University of Ottawa 3 , Ottawa, Ontario M5S 3G8, Canada |
| authorships[3].author.id | https://openalex.org/A5077238261 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6644-0178 |
| authorships[3].author.display_name | Chandra Veer Singh |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I185261750 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Mechanical and Industrial Engineering, University of Toronto 2 , Toronto, Ontario M5S 3E4, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I185261750 |
| authorships[3].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Toronto |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chandra Veer Singh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Materials Science and Engineering, University of Toronto 1 , Toronto, Ontario M5S 3E4, Canada, Department of Mechanical and Industrial Engineering, University of Toronto 2 , Toronto, Ontario M5S 3E4, Canada |
| authorships[4].author.id | https://openalex.org/A5009383752 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8992-4335 |
| authorships[4].author.display_name | Conrard Giresse Tetsassi Feugmo |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Chemistry, University of Waterloo 5 , 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I151746483 |
| authorships[4].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Waterloo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Conrard Giresse Tetsassi Feugmo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Chemistry, University of Waterloo 5 , 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic graph representation algorithm for heterogeneous catalysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2380864953, https://openalex.org/W2465142702, https://openalex.org/W2386767533, https://openalex.org/W2391817034, https://openalex.org/W2950287037, https://openalex.org/W1573429246, https://openalex.org/W2133539673, https://openalex.org/W3089212347, https://openalex.org/W4300814336, https://openalex.org/W2890636645 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0140487 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387287287 |
| best_oa_location.source.issn | 2770-9019 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2770-9019 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | APL Machine Learning |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | APL Machine Learning |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0140487 |
| primary_location.id | doi:10.1063/5.0140487 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387287287 |
| primary_location.source.issn | 2770-9019 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2770-9019 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | APL Machine Learning |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.aip.org/aip/aml/article-pdf/doi/10.1063/5.0140487/18023508/036103_1_5.0140487.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | APL Machine Learning |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0140487 |
| publication_date | 2023-07-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3087505564, https://openalex.org/W2999482379, https://openalex.org/W3196126979, https://openalex.org/W3048912808, https://openalex.org/W3186879433, https://openalex.org/W2909236073, https://openalex.org/W2462003543, https://openalex.org/W3158986751, https://openalex.org/W2992601128, https://openalex.org/W3070174055, https://openalex.org/W3156633173, https://openalex.org/W2766856748, https://openalex.org/W2961429249, https://openalex.org/W3036167153, https://openalex.org/W2601081289, https://openalex.org/W2132022337, https://openalex.org/W2949095042, https://openalex.org/W3093999435, https://openalex.org/W2173183968, https://openalex.org/W3212512279, https://openalex.org/W4309646813, https://openalex.org/W2972052805, https://openalex.org/W3025104221, https://openalex.org/W3173478819 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 64, 71, 89, 138, 221, 226, 247 |
| abstract_inverted_index.In | 86 |
| abstract_inverted_index.To | 141, 212 |
| abstract_inverted_index.an | 102, 205, 234, 254 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.eV | 187, 210 |
| abstract_inverted_index.in | 98 |
| abstract_inverted_index.is | 12, 63, 96, 122 |
| abstract_inverted_index.it | 156 |
| abstract_inverted_index.of | 1, 6, 17, 25, 101, 115, 131, 208, 229, 236, 250 |
| abstract_inverted_index.on | 225 |
| abstract_inverted_index.to | 21, 83, 92, 109, 124, 151, 159, 245 |
| abstract_inverted_index.For | 52 |
| abstract_inverted_index.New | 39 |
| abstract_inverted_index.ORR | 257 |
| abstract_inverted_index.One | 0 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.all | 230 |
| abstract_inverted_index.and | 34, 59, 66, 78, 134, 146, 165, 218, 253 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.but | 20 |
| abstract_inverted_index.eV. | 238 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.its | 13 |
| abstract_inverted_index.new | 256 |
| abstract_inverted_index.the | 2, 23, 99, 111, 168, 195, 215 |
| abstract_inverted_index.two | 176 |
| abstract_inverted_index.was | 157, 223, 242, 261 |
| abstract_inverted_index.O/OH | 183 |
| abstract_inverted_index.Open | 169 |
| abstract_inverted_index.RMSD | 235 |
| abstract_inverted_index.This | 120, 239 |
| abstract_inverted_index.able | 123 |
| abstract_inverted_index.cost | 149 |
| abstract_inverted_index.five | 160, 231 |
| abstract_inverted_index.form | 100 |
| abstract_inverted_index.have | 46, 82 |
| abstract_inverted_index.high | 14 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.more | 29 |
| abstract_inverted_index.most | 3 |
| abstract_inverted_index.seen | 47 |
| abstract_inverted_index.show | 142 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.than | 30 |
| abstract_inverted_index.them | 136 |
| abstract_inverted_index.then | 243, 262 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.tool | 108, 121 |
| abstract_inverted_index.used | 244 |
| abstract_inverted_index.when | 191 |
| abstract_inverted_index.wide | 248 |
| abstract_inverted_index.with | 182, 202, 233 |
| abstract_inverted_index.(ORR) | 180 |
| abstract_inverted_index.0.053 | 186 |
| abstract_inverted_index.0.088 | 209 |
| abstract_inverted_index.0.105 | 237 |
| abstract_inverted_index.RMSD. | 211 |
| abstract_inverted_index.bonds | 58, 62 |
| abstract_inverted_index.graph | 43, 104, 153, 172 |
| abstract_inverted_index.local | 112 |
| abstract_inverted_index.model | 32, 80, 222, 241 |
| abstract_inverted_index.other | 152 |
| abstract_inverted_index.range | 249 |
| abstract_inverted_index.reach | 22 |
| abstract_inverted_index.solve | 93 |
| abstract_inverted_index.these | 94 |
| abstract_inverted_index.three | 196 |
| abstract_inverted_index.which | 260 |
| abstract_inverted_index.work, | 88 |
| abstract_inverted_index.(AGRA) | 107 |
| abstract_inverted_index.(RMSD) | 190 |
| abstract_inverted_index.Before | 69 |
| abstract_inverted_index.carbon | 197 |
| abstract_inverted_index.design | 11 |
| abstract_inverted_index.gather | 125 |
| abstract_inverted_index.issues | 95 |
| abstract_inverted_index.model, | 72 |
| abstract_inverted_index.model. | 140 |
| abstract_inverted_index.neural | 44 |
| abstract_inverted_index.oxygen | 177 |
| abstract_inverted_index.single | 139 |
| abstract_inverted_index.sites. | 119 |
| abstract_inverted_index.subset | 227 |
| abstract_inverted_index.theory | 267 |
| abstract_inverted_index.against | 167 |
| abstract_inverted_index.applied | 158 |
| abstract_inverted_index.aspects | 5 |
| abstract_inverted_index.average | 206 |
| abstract_inverted_index.ceiling | 24 |
| abstract_inverted_index.combine | 135 |
| abstract_inverted_index.current | 31 |
| abstract_inverted_index.dataset | 73 |
| abstract_inverted_index.density | 265 |
| abstract_inverted_index.design, | 77 |
| abstract_inverted_index.dioxide | 198 |
| abstract_inverted_index.display | 214 |
| abstract_inverted_index.extract | 110 |
| abstract_inverted_index.further | 213 |
| abstract_inverted_index.machine | 7, 26 |
| abstract_inverted_index.method. | 174 |
| abstract_inverted_index.predict | 246 |
| abstract_inverted_index.reduced | 147 |
| abstract_inverted_index.spaces, | 19 |
| abstract_inverted_index.surface | 117 |
| abstract_inverted_index.system, | 259 |
| abstract_inverted_index.systems | 133 |
| abstract_inverted_index.through | 264 |
| abstract_inverted_index.trained | 224 |
| abstract_inverted_index.whereas | 194 |
| abstract_inverted_index.AGRA’s | 143 |
| abstract_inverted_index.Catalyst | 170 |
| abstract_inverted_index.Projects | 171 |
| abstract_inverted_index.ability, | 220 |
| abstract_inverted_index.applying | 70 |
| abstract_inverted_index.catalyst | 258 |
| abstract_inverted_index.chemical | 18, 113 |
| abstract_inverted_index.combined | 192 |
| abstract_inverted_index.compared | 150 |
| abstract_inverted_index.composed | 130 |
| abstract_inverted_index.datasets | 129, 164, 181, 201, 232 |
| abstract_inverted_index.defining | 55 |
| abstract_inverted_index.designed | 91 |
| abstract_inverted_index.energies | 252 |
| abstract_inverted_index.entirely | 255 |
| abstract_inverted_index.geometry | 128 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.material | 10 |
| abstract_inverted_index.metallic | 116 |
| abstract_inverted_index.methods, | 155 |
| abstract_inverted_index.multiple | 126 |
| abstract_inverted_index.networks | 45 |
| abstract_inverted_index.obtained | 185, 204 |
| abstract_inverted_index.process. | 68 |
| abstract_inverted_index.reaction | 163, 179, 200 |
| abstract_inverted_index.research | 49 |
| abstract_inverted_index.specific | 79 |
| abstract_inverted_index.verified | 263 |
| abstract_inverted_index.algorithm | 106 |
| abstract_inverted_index.appealing | 4 |
| abstract_inverted_index.automatic | 103 |
| abstract_inverted_index.catalytic | 162 |
| abstract_inverted_index.deviation | 189 |
| abstract_inverted_index.different | 132, 161 |
| abstract_inverted_index.excellent | 144 |
| abstract_inverted_index.framework | 90 |
| abstract_inverted_index.node/bond | 75 |
| abstract_inverted_index.presented | 97 |
| abstract_inverted_index.recently. | 51 |
| abstract_inverted_index.reduction | 178, 199 |
| abstract_inverted_index.required. | 38 |
| abstract_inverted_index.substrate | 56 |
| abstract_inverted_index.together, | 193 |
| abstract_inverted_index.universal | 240 |
| abstract_inverted_index.adsorbates | 184 |
| abstract_inverted_index.adsorption | 118, 127, 251 |
| abstract_inverted_index.algorithms | 36 |
| abstract_inverted_index.catalysis, | 54 |
| abstract_inverted_index.descriptor | 76 |
| abstract_inverted_index.functional | 266 |
| abstract_inverted_index.processing | 35 |
| abstract_inverted_index.throughput | 15 |
| abstract_inverted_index.CHO/CO/COOH | 203 |
| abstract_inverted_index.benchmarked | 166 |
| abstract_inverted_index.challenging | 67 |
| abstract_inverted_index.combination | 228 |
| abstract_inverted_index.considered. | 85 |
| abstract_inverted_index.constraints | 81 |
| abstract_inverted_index.environment | 114 |
| abstract_inverted_index.exploration | 16 |
| abstract_inverted_index.investments | 50 |
| abstract_inverted_index.performance | 207 |
| abstract_inverted_index.significant | 48 |
| abstract_inverted_index.versatility | 217 |
| abstract_inverted_index.exploration, | 28 |
| abstract_inverted_index.algorithm’s | 216 |
| abstract_inverted_index.architectures | 33, 40 |
| abstract_inverted_index.calculations. | 268 |
| abstract_inverted_index.computational | 148 |
| abstract_inverted_index.extrapolation | 219 |
| abstract_inverted_index.heterogeneous | 53 |
| abstract_inverted_index.intermolecular | 61 |
| abstract_inverted_index.intramolecular | 57 |
| abstract_inverted_index.learning-aided | 27 |
| abstract_inverted_index.representation | 105, 154, 173 |
| abstract_inverted_index.time-consuming | 65 |
| abstract_inverted_index.pre-processing, | 74 |
| abstract_inverted_index.transferability | 145 |
| abstract_inverted_index.root-mean-square | 188 |
| abstract_inverted_index.adsorbate/substrate | 60 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.60298476 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |