Automatic image processing to identify post-COVID conditions by using deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31349/revmexfis.69.061101
In the present research, a supervised learning classification methodology is proposed to identify post-COVID conditions. Image processing and deep learning methods were employed to analyze a data set provided by the High Specialty Medical Unit No.1 of the Mexican Institute of Social Security (T1-IMSS) of Leon, Guanajuato, Mexico, of Mexican patients infected with COVID-19. The dataset is classified into post-COVID findings and no post-COVID findings. A deep neural network of 50 hidden layers is used to extract regions of interest, with properties that can potentially be related to computer-aided medical diagnosis. Different patterns were found in the post-COVID computed tomography scans: pulmonary fibrosis, ground glass pattern, etc. The efficiency of the proposed method was 97% precision using the cross-validation classification scenario. This result allows to provide an auxiliary tool in medical diagnosis, through computer-aided diagnosis. This model provides an automatic and objective estimation of post-COVID conditions of Mexican patients, facilitating the expert interpretation during the COVID-19 pandemic.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31349/revmexfis.69.061101
- https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829
- OA Status
- diamond
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388231515
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388231515Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31349/revmexfis.69.061101Digital Object Identifier
- Title
-
Automatic image processing to identify post-COVID conditions by using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-01Full publication date if available
- Authors
-
Arón Hernández-Trinidad, Teodoro Córdova‐Fraga, Luis Carlos Padierna, José Luis López Hernández, Blanca Murillo-Ortíz, Rafael Guzmán-CabreraList of authors in order
- Landing page
-
https://doi.org/10.31349/revmexfis.69.061101Publisher landing page
- PDF URL
-
https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829Direct OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Artificial intelligence, Deep learning, Computer science, Artificial neural network, Field (mathematics), Data set, Machine learning, Image processing, Set (abstract data type), Medical diagnosis, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Pattern recognition (psychology), Image (mathematics), Data mining, Medicine, Pathology, Mathematics, Infectious disease (medical specialty), Programming language, Pure mathematics, DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388231515 |
|---|---|
| doi | https://doi.org/10.31349/revmexfis.69.061101 |
| ids.doi | https://doi.org/10.31349/revmexfis.69.061101 |
| ids.openalex | https://openalex.org/W4388231515 |
| fwci | 0.0 |
| type | article |
| title | Automatic image processing to identify post-COVID conditions by using deep learning |
| biblio.issue | 6 Nov-Dec |
| biblio.volume | 69 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.986299991607666 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.769976019859314 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.72916579246521 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6796960830688477 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6353083848953247 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.55742347240448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5027141571044922 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C58489278 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49607381224632263 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[6].display_name | Data set |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4858241081237793 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C9417928 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47897055745124817 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[8].display_name | Image processing |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46977657079696655 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C534262118 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45814037322998047 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[10].display_name | Medical diagnosis |
| concepts[11].id | https://openalex.org/C3007834351 |
| concepts[11].level | 5 |
| concepts[11].score | 0.44796186685562134 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[11].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4410097002983093 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.37442630529403687 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3621599078178406 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.19024980068206787 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C142724271 |
| concepts[16].level | 1 |
| concepts[16].score | 0.16937464475631714 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[16].display_name | Pathology |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.14981529116630554 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C524204448 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[18].display_name | Infectious disease (medical specialty) |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C2779134260 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[21].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.769976019859314 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.72916579246521 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6796960830688477 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6353083848953247 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.55742347240448 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.5027141571044922 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/data-set |
| keywords[6].score | 0.49607381224632263 |
| keywords[6].display_name | Data set |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4858241081237793 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/image-processing |
| keywords[8].score | 0.47897055745124817 |
| keywords[8].display_name | Image processing |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.46977657079696655 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[10].score | 0.45814037322998047 |
| keywords[10].display_name | Medical diagnosis |
| keywords[11].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[11].score | 0.44796186685562134 |
| keywords[11].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4410097002983093 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.37442630529403687 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.3621599078178406 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.19024980068206787 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/pathology |
| keywords[16].score | 0.16937464475631714 |
| keywords[16].display_name | Pathology |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.14981529116630554 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.31349/revmexfis.69.061101 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198822434 |
| locations[0].source.issn | 0035-001X, 2683-2224 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0035-001X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Revista Mexicana de Física |
| locations[0].source.host_organization | https://openalex.org/P4323253378 |
| locations[0].source.host_organization_name | Mexican Society of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4323253378 |
| locations[0].source.host_organization_lineage_names | Mexican Society of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Revista Mexicana de Física |
| locations[0].landing_page_url | https://doi.org/10.31349/revmexfis.69.061101 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063724803 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5619-6810 |
| authorships[0].author.display_name | Arón Hernández-Trinidad |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[0].institutions[0].id | https://openalex.org/I129858807 |
| authorships[0].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad de Guanajuato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arón Hernández Trinidad |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[1].author.id | https://openalex.org/A5016367516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6486-7530 |
| authorships[1].author.display_name | Teodoro Córdova‐Fraga |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[1].institutions[0].id | https://openalex.org/I129858807 |
| authorships[1].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Universidad de Guanajuato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Teodoro Córdova Fraga |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[2].author.id | https://openalex.org/A5018502199 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7474-9159 |
| authorships[2].author.display_name | Luis Carlos Padierna |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[2].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[2].institutions[0].id | https://openalex.org/I129858807 |
| authorships[2].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad de Guanajuato |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luis Carlos Padierna García |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[3].author.id | https://openalex.org/A5073852201 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | José Luis López Hernández |
| authorships[3].affiliations[0].raw_affiliation_string | Unidad de Medicina de Alta Especialidad No. 1, IMSS |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | José Luis López Hernández |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Unidad de Medicina de Alta Especialidad No. 1, IMSS |
| authorships[4].author.id | https://openalex.org/A5003667292 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4775-2755 |
| authorships[4].author.display_name | Blanca Murillo-Ortíz |
| authorships[4].affiliations[0].raw_affiliation_string | Unidad de Medicina de Alta Especialidad No. 1, IMSS |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Blanca Olivia Murillo Ortiz |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Unidad de Medicina de Alta Especialidad No. 1, IMSS |
| authorships[5].author.id | https://openalex.org/A5030185432 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9320-7021 |
| authorships[5].author.display_name | Rafael Guzmán-Cabrera |
| authorships[5].countries | MX |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[5].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[5].institutions[0].id | https://openalex.org/I129858807 |
| authorships[5].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[5].institutions[0].country_code | MX |
| authorships[5].institutions[0].display_name | Universidad de Guanajuato |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rafael Guzman-Cabrera |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Universidad de Guanajuato |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic image processing to identify post-COVID conditions by using deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.986299991607666 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4249377076, https://openalex.org/W4210389441, https://openalex.org/W1910186363, https://openalex.org/W4375867731, https://openalex.org/W2604451061, https://openalex.org/W2395241803, https://openalex.org/W2003211637, https://openalex.org/W2021488205, https://openalex.org/W2418110971, https://openalex.org/W2806095031 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31349/revmexfis.69.061101 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198822434 |
| best_oa_location.source.issn | 0035-001X, 2683-2224 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0035-001X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Revista Mexicana de Física |
| best_oa_location.source.host_organization | https://openalex.org/P4323253378 |
| best_oa_location.source.host_organization_name | Mexican Society of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4323253378 |
| best_oa_location.source.host_organization_lineage_names | Mexican Society of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Revista Mexicana de Física |
| best_oa_location.landing_page_url | https://doi.org/10.31349/revmexfis.69.061101 |
| primary_location.id | doi:10.31349/revmexfis.69.061101 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198822434 |
| primary_location.source.issn | 0035-001X, 2683-2224 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0035-001X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Revista Mexicana de Física |
| primary_location.source.host_organization | https://openalex.org/P4323253378 |
| primary_location.source.host_organization_name | Mexican Society of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4323253378 |
| primary_location.source.host_organization_lineage_names | Mexican Society of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://rmf.smf.mx/ojs/index.php/rmf/article/download/6719/6829 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Revista Mexicana de Física |
| primary_location.landing_page_url | https://doi.org/10.31349/revmexfis.69.061101 |
| publication_date | 2023-11-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2886848602, https://openalex.org/W2608231518, https://openalex.org/W2915130814, https://openalex.org/W2919115771, https://openalex.org/W3158324689, https://openalex.org/W4213203281, https://openalex.org/W4288400169, https://openalex.org/W2102634410, https://openalex.org/W3014047622, https://openalex.org/W3024333932, https://openalex.org/W2114075052, https://openalex.org/W1657060916, https://openalex.org/W2957007523, https://openalex.org/W292488259, https://openalex.org/W2794518994, https://openalex.org/W2293871383, https://openalex.org/W3107185627, https://openalex.org/W3135096391, https://openalex.org/W3005711456, https://openalex.org/W2942137712, https://openalex.org/W3118390746, https://openalex.org/W2007178835, https://openalex.org/W2052546795, https://openalex.org/W3010398094 |
| referenced_works_count | 24 |
| abstract_inverted_index.A | 65 |
| abstract_inverted_index.a | 4, 25 |
| abstract_inverted_index.50 | 70 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 126, 138 |
| abstract_inverted_index.be | 85 |
| abstract_inverted_index.by | 29 |
| abstract_inverted_index.in | 95, 129 |
| abstract_inverted_index.is | 9, 56, 73 |
| abstract_inverted_index.no | 62 |
| abstract_inverted_index.of | 36, 40, 44, 48, 69, 78, 109, 143, 146 |
| abstract_inverted_index.to | 11, 23, 75, 87, 124 |
| abstract_inverted_index.97% | 114 |
| abstract_inverted_index.The | 54, 107 |
| abstract_inverted_index.and | 17, 61, 140 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.set | 27 |
| abstract_inverted_index.the | 1, 30, 37, 96, 110, 117, 150, 154 |
| abstract_inverted_index.was | 113 |
| abstract_inverted_index.High | 31 |
| abstract_inverted_index.No.1 | 35 |
| abstract_inverted_index.This | 121, 135 |
| abstract_inverted_index.Unit | 34 |
| abstract_inverted_index.data | 26 |
| abstract_inverted_index.deep | 18, 66 |
| abstract_inverted_index.etc. | 106 |
| abstract_inverted_index.into | 58 |
| abstract_inverted_index.that | 82 |
| abstract_inverted_index.tool | 128 |
| abstract_inverted_index.used | 74 |
| abstract_inverted_index.were | 21, 93 |
| abstract_inverted_index.with | 52, 80 |
| abstract_inverted_index.Image | 15 |
| abstract_inverted_index.Leon, | 45 |
| abstract_inverted_index.found | 94 |
| abstract_inverted_index.glass | 104 |
| abstract_inverted_index.model | 136 |
| abstract_inverted_index.using | 116 |
| abstract_inverted_index.Social | 41 |
| abstract_inverted_index.allows | 123 |
| abstract_inverted_index.during | 153 |
| abstract_inverted_index.expert | 151 |
| abstract_inverted_index.ground | 103 |
| abstract_inverted_index.hidden | 71 |
| abstract_inverted_index.layers | 72 |
| abstract_inverted_index.method | 112 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.result | 122 |
| abstract_inverted_index.scans: | 100 |
| abstract_inverted_index.Medical | 33 |
| abstract_inverted_index.Mexican | 38, 49, 147 |
| abstract_inverted_index.Mexico, | 47 |
| abstract_inverted_index.analyze | 24 |
| abstract_inverted_index.dataset | 55 |
| abstract_inverted_index.extract | 76 |
| abstract_inverted_index.medical | 89, 130 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.network | 68 |
| abstract_inverted_index.present | 2 |
| abstract_inverted_index.provide | 125 |
| abstract_inverted_index.regions | 77 |
| abstract_inverted_index.related | 86 |
| abstract_inverted_index.through | 132 |
| abstract_inverted_index.COVID-19 | 155 |
| abstract_inverted_index.Security | 42 |
| abstract_inverted_index.computed | 98 |
| abstract_inverted_index.employed | 22 |
| abstract_inverted_index.findings | 60 |
| abstract_inverted_index.identify | 12 |
| abstract_inverted_index.infected | 51 |
| abstract_inverted_index.learning | 6, 19 |
| abstract_inverted_index.patients | 50 |
| abstract_inverted_index.pattern, | 105 |
| abstract_inverted_index.patterns | 92 |
| abstract_inverted_index.proposed | 10, 111 |
| abstract_inverted_index.provided | 28 |
| abstract_inverted_index.provides | 137 |
| abstract_inverted_index.(T1-IMSS) | 43 |
| abstract_inverted_index.COVID-19. | 53 |
| abstract_inverted_index.Different | 91 |
| abstract_inverted_index.Institute | 39 |
| abstract_inverted_index.Specialty | 32 |
| abstract_inverted_index.automatic | 139 |
| abstract_inverted_index.auxiliary | 127 |
| abstract_inverted_index.fibrosis, | 102 |
| abstract_inverted_index.findings. | 64 |
| abstract_inverted_index.interest, | 79 |
| abstract_inverted_index.objective | 141 |
| abstract_inverted_index.pandemic. | 156 |
| abstract_inverted_index.patients, | 148 |
| abstract_inverted_index.precision | 115 |
| abstract_inverted_index.pulmonary | 101 |
| abstract_inverted_index.research, | 3 |
| abstract_inverted_index.scenario. | 120 |
| abstract_inverted_index.classified | 57 |
| abstract_inverted_index.conditions | 145 |
| abstract_inverted_index.diagnosis, | 131 |
| abstract_inverted_index.diagnosis. | 90, 134 |
| abstract_inverted_index.efficiency | 108 |
| abstract_inverted_index.estimation | 142 |
| abstract_inverted_index.post-COVID | 13, 59, 63, 97, 144 |
| abstract_inverted_index.processing | 16 |
| abstract_inverted_index.properties | 81 |
| abstract_inverted_index.supervised | 5 |
| abstract_inverted_index.tomography | 99 |
| abstract_inverted_index.Guanajuato, | 46 |
| abstract_inverted_index.conditions. | 14 |
| abstract_inverted_index.methodology | 8 |
| abstract_inverted_index.potentially | 84 |
| abstract_inverted_index.facilitating | 149 |
| abstract_inverted_index.classification | 7, 119 |
| abstract_inverted_index.computer-aided | 88, 133 |
| abstract_inverted_index.interpretation | 152 |
| abstract_inverted_index.cross-validation | 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.35174145 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |