Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5194/amt-2018-432
Pollen-induced allergy is among the most-prevalent non-contagious diseases, with about a quarter of European population sensitive to various atmospheric bioaerosols. In most European countries, pollen information is based on a weekly-cycle Hirst-type pollen trap method. This method is labour-intensive, requires narrow specialization abilities and substantial time, so that the pollen data are always delayed, subject to sampling- and counting-related uncertainties. Emerging new approaches to automatic pollen monitoring can, in principle, allow for real-time availability of the data with no human involvement. The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and to construct the first-level pollen recognition algorithm. The evaluation was performed for three devices located in Lithuania, Serbia and Switzerland, with independent calibration data and classification algorithms. The Rapid-E output data include multi-angle scattering images and the fluorescence spectra recorded at several times for each particle reaching the device. Both modalities of the Rapid-E output were treated with artificial neural networks (ANN) and the results were combined to obtain the pollen type. For the first classification experiment, the monitor was challenged with a large variety of pollen types and the quality of many-to-many classification was evaluated. It was shown that in this case, both scattering- and fluorescence- based recognition algorithms fall short of acceptable quality. The combinations of these algorithms performed better exceeding 80 % accuracy for 5 out of 11 species. Fluorescence spectra showed similarities among different species ending up with three well-resolved groups: (Alnus, Corylus, Betula and Quercus), (Salix and Populus), and (Festuca, Artemisia, Juniperus). Within these groups, pollen is practically non-distinguishable for the first-level recognition procedure. Construction of multi-steps algorithms with sequential discrimination of pollen inside each group seems to be one of possible ways forwards. In order to connect the classification experiment to existing technology, a short comparison with the Hirst measurements is presented and an issue of the false-positive pollen detections by Rapid-E is discussed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/amt-2018-432
- OA Status
- gold
- Cited By
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4233762152
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4233762152Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/amt-2018-432Digital Object Identifier
- Title
-
Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next stepsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-21Full publication date if available
- Authors
-
Ingrida Šaulienė, Laura Šukienė, Gintautas Daunys, Gediminas Valiulis, Lukas Vaitkevičius, Predrag Matavulj, Sanja Brdar, Marko Panić, Branko Šikoparija, Bernard Clot, Benoît Crouzy, Mikhail SofievList of authors in order
- Landing page
-
https://doi.org/10.5194/amt-2018-432Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/amt-2018-432Direct OA link when available
- Concepts
-
Pollen, Aerobiology, Computer science, Construct (python library), Indoor bioaerosol, Population, Artificial intelligence, Algorithm, Machine learning, Pattern recognition (psychology), Geography, Biology, Botany, Meteorology, Medicine, Environmental health, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 3, 2020: 3, 2019: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4233762152 |
|---|---|
| doi | https://doi.org/10.5194/amt-2018-432 |
| ids.doi | https://doi.org/10.5194/amt-2018-432 |
| ids.openalex | https://openalex.org/W4233762152 |
| fwci | 1.61473254 |
| type | preprint |
| title | Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps |
| awards[0].id | https://openalex.org/G5087380304 |
| awards[0].funder_id | https://openalex.org/F4320321108 |
| awards[0].display_name | |
| awards[0].funder_award_id | PS4A (318194) |
| awards[0].funder_display_name | Academy of Finland |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10877 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2723 |
| topics[0].subfield.display_name | Immunology and Allergy |
| topics[0].display_name | Allergic Rhinitis and Sensitization |
| topics[1].id | https://openalex.org/T10825 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1307 |
| topics[1].subfield.display_name | Cell Biology |
| topics[1].display_name | Plant Pathogens and Fungal Diseases |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9818999767303467 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| funders[0].id | https://openalex.org/F4320321108 |
| funders[0].ror | https://ror.org/05k73zm37 |
| funders[0].display_name | Academy of Finland |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780618852 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8856769800186157 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q79932 |
| concepts[0].display_name | Pollen |
| concepts[1].id | https://openalex.org/C23501599 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5752268433570862 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q381392 |
| concepts[1].display_name | Aerobiology |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5521327257156372 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780801425 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4885924458503723 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[3].display_name | Construct (python library) |
| concepts[4].id | https://openalex.org/C83230799 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4694466292858124 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17056224 |
| concepts[4].display_name | Indoor bioaerosol |
| concepts[5].id | https://openalex.org/C2908647359 |
| concepts[5].level | 2 |
| concepts[5].score | 0.446732759475708 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[5].display_name | Population |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.437478244304657 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4106904864311218 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35877418518066406 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.34341293573379517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.25349122285842896 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13836157321929932 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12469372153282166 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11665093898773193 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0828009843826294 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C99454951 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[15].display_name | Environmental health |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/pollen |
| keywords[0].score | 0.8856769800186157 |
| keywords[0].display_name | Pollen |
| keywords[1].id | https://openalex.org/keywords/aerobiology |
| keywords[1].score | 0.5752268433570862 |
| keywords[1].display_name | Aerobiology |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5521327257156372 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/construct |
| keywords[3].score | 0.4885924458503723 |
| keywords[3].display_name | Construct (python library) |
| keywords[4].id | https://openalex.org/keywords/indoor-bioaerosol |
| keywords[4].score | 0.4694466292858124 |
| keywords[4].display_name | Indoor bioaerosol |
| keywords[5].id | https://openalex.org/keywords/population |
| keywords[5].score | 0.446732759475708 |
| keywords[5].display_name | Population |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.437478244304657 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4106904864311218 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.35877418518066406 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.34341293573379517 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.25349122285842896 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.13836157321929932 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/botany |
| keywords[12].score | 0.12469372153282166 |
| keywords[12].display_name | Botany |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.11665093898773193 |
| keywords[13].display_name | Meteorology |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.0828009843826294 |
| keywords[14].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.5194/amt-2018-432 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/amt-2018-432 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5033362100 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0250-1127 |
| authorships[0].author.display_name | Ingrida Šaulienė |
| authorships[0].countries | LT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[0].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[0].institutions[0].id | https://openalex.org/I162380102 |
| authorships[0].institutions[0].ror | https://ror.org/033rfce62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162380102 |
| authorships[0].institutions[0].country_code | LT |
| authorships[0].institutions[0].display_name | Šiauliai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ingrida Šaulienė |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[1].author.id | https://openalex.org/A5020250192 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8273-7182 |
| authorships[1].author.display_name | Laura Šukienė |
| authorships[1].countries | LT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[1].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[1].institutions[0].id | https://openalex.org/I162380102 |
| authorships[1].institutions[0].ror | https://ror.org/033rfce62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162380102 |
| authorships[1].institutions[0].country_code | LT |
| authorships[1].institutions[0].display_name | Šiauliai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Laura Šukienė |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[2].author.id | https://openalex.org/A5088594231 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2295-2881 |
| authorships[2].author.display_name | Gintautas Daunys |
| authorships[2].countries | LT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[2].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[2].institutions[0].id | https://openalex.org/I162380102 |
| authorships[2].institutions[0].ror | https://ror.org/033rfce62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162380102 |
| authorships[2].institutions[0].country_code | LT |
| authorships[2].institutions[0].display_name | Šiauliai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gintautas Daunys |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[3].author.id | https://openalex.org/A5039265908 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6599-6158 |
| authorships[3].author.display_name | Gediminas Valiulis |
| authorships[3].countries | LT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[3].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[3].institutions[0].id | https://openalex.org/I162380102 |
| authorships[3].institutions[0].ror | https://ror.org/033rfce62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162380102 |
| authorships[3].institutions[0].country_code | LT |
| authorships[3].institutions[0].display_name | Šiauliai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gediminas Valiulis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[4].author.id | https://openalex.org/A5060900099 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0980-4916 |
| authorships[4].author.display_name | Lukas Vaitkevičius |
| authorships[4].countries | LT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[4].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[4].institutions[0].id | https://openalex.org/I162380102 |
| authorships[4].institutions[0].ror | https://ror.org/033rfce62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162380102 |
| authorships[4].institutions[0].country_code | LT |
| authorships[4].institutions[0].display_name | Šiauliai University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lukas Vaitkevičius |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[5].author.id | https://openalex.org/A5034656495 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0229-7189 |
| authorships[5].author.display_name | Predrag Matavulj |
| authorships[5].countries | RS |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I170726198, https://openalex.org/I4210154960 |
| authorships[5].affiliations[0].raw_affiliation_string | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[5].institutions[0].id | https://openalex.org/I4210154960 |
| authorships[5].institutions[0].ror | https://ror.org/04qn48008 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210154960 |
| authorships[5].institutions[0].country_code | RS |
| authorships[5].institutions[0].display_name | BioSense Institute |
| authorships[5].institutions[1].id | https://openalex.org/I170726198 |
| authorships[5].institutions[1].ror | https://ror.org/00xa57a59 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I170726198 |
| authorships[5].institutions[1].country_code | RS |
| authorships[5].institutions[1].display_name | University of Novi Sad |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Predrag Matavulj |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[6].author.id | https://openalex.org/A5077675949 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2259-4693 |
| authorships[6].author.display_name | Sanja Brdar |
| authorships[6].countries | RS |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I170726198, https://openalex.org/I4210154960 |
| authorships[6].affiliations[0].raw_affiliation_string | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[6].institutions[0].id | https://openalex.org/I4210154960 |
| authorships[6].institutions[0].ror | https://ror.org/04qn48008 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210154960 |
| authorships[6].institutions[0].country_code | RS |
| authorships[6].institutions[0].display_name | BioSense Institute |
| authorships[6].institutions[1].id | https://openalex.org/I170726198 |
| authorships[6].institutions[1].ror | https://ror.org/00xa57a59 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I170726198 |
| authorships[6].institutions[1].country_code | RS |
| authorships[6].institutions[1].display_name | University of Novi Sad |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sanja Brdar |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[7].author.id | https://openalex.org/A5061183750 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7993-6826 |
| authorships[7].author.display_name | Marko Panić |
| authorships[7].countries | RS |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170726198, https://openalex.org/I4210154960 |
| authorships[7].affiliations[0].raw_affiliation_string | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[7].institutions[0].id | https://openalex.org/I4210154960 |
| authorships[7].institutions[0].ror | https://ror.org/04qn48008 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210154960 |
| authorships[7].institutions[0].country_code | RS |
| authorships[7].institutions[0].display_name | BioSense Institute |
| authorships[7].institutions[1].id | https://openalex.org/I170726198 |
| authorships[7].institutions[1].ror | https://ror.org/00xa57a59 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I170726198 |
| authorships[7].institutions[1].country_code | RS |
| authorships[7].institutions[1].display_name | University of Novi Sad |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Marko Panic |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[8].author.id | https://openalex.org/A5014960519 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6766-4149 |
| authorships[8].author.display_name | Branko Šikoparija |
| authorships[8].countries | RS |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I170726198, https://openalex.org/I4210154960 |
| authorships[8].affiliations[0].raw_affiliation_string | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[8].institutions[0].id | https://openalex.org/I4210154960 |
| authorships[8].institutions[0].ror | https://ror.org/04qn48008 |
| authorships[8].institutions[0].type | facility |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210154960 |
| authorships[8].institutions[0].country_code | RS |
| authorships[8].institutions[0].display_name | BioSense Institute |
| authorships[8].institutions[1].id | https://openalex.org/I170726198 |
| authorships[8].institutions[1].ror | https://ror.org/00xa57a59 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I170726198 |
| authorships[8].institutions[1].country_code | RS |
| authorships[8].institutions[1].display_name | University of Novi Sad |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Branko Sikoparija |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | BioSensе Institute -Research Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia |
| authorships[9].author.id | https://openalex.org/A5040848493 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3935-6509 |
| authorships[9].author.display_name | Bernard Clot |
| authorships[9].countries | CH |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1324989862 |
| authorships[9].affiliations[0].raw_affiliation_string | Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, CH-1530, Switzerland |
| authorships[9].institutions[0].id | https://openalex.org/I1324989862 |
| authorships[9].institutions[0].ror | https://ror.org/03wbkx358 |
| authorships[9].institutions[0].type | government |
| authorships[9].institutions[0].lineage | https://openalex.org/I1324989862 |
| authorships[9].institutions[0].country_code | CH |
| authorships[9].institutions[0].display_name | Federal Office of Meteorology and Climatology MeteoSwiss |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Bernard Clot |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, CH-1530, Switzerland |
| authorships[10].author.id | https://openalex.org/A5032014480 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-9911-415X |
| authorships[10].author.display_name | Benoît Crouzy |
| authorships[10].countries | CH |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1324989862 |
| authorships[10].affiliations[0].raw_affiliation_string | Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, CH-1530, Switzerland |
| authorships[10].institutions[0].id | https://openalex.org/I1324989862 |
| authorships[10].institutions[0].ror | https://ror.org/03wbkx358 |
| authorships[10].institutions[0].type | government |
| authorships[10].institutions[0].lineage | https://openalex.org/I1324989862 |
| authorships[10].institutions[0].country_code | CH |
| authorships[10].institutions[0].display_name | Federal Office of Meteorology and Climatology MeteoSwiss |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Benoît Crouzy |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, CH-1530, Switzerland |
| authorships[11].author.id | https://openalex.org/A5027303596 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-9542-5746 |
| authorships[11].author.display_name | Mikhail Sofiev |
| authorships[11].countries | FI, LT |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I162380102 |
| authorships[11].affiliations[0].raw_affiliation_string | Siauliai University, Šiauliai, 76352 Lithuania |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I1285790362 |
| authorships[11].affiliations[1].raw_affiliation_string | Finnish Meteorological Institute, Helsinki, 00560, Finland |
| authorships[11].institutions[0].id | https://openalex.org/I1285790362 |
| authorships[11].institutions[0].ror | https://ror.org/05hppb561 |
| authorships[11].institutions[0].type | government |
| authorships[11].institutions[0].lineage | https://openalex.org/I1284112523, https://openalex.org/I1285790362 |
| authorships[11].institutions[0].country_code | FI |
| authorships[11].institutions[0].display_name | Finnish Meteorological Institute |
| authorships[11].institutions[1].id | https://openalex.org/I162380102 |
| authorships[11].institutions[1].ror | https://ror.org/033rfce62 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I162380102 |
| authorships[11].institutions[1].country_code | LT |
| authorships[11].institutions[1].display_name | Šiauliai University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Mikhail Sofiev |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Finnish Meteorological Institute, Helsinki, 00560, Finland, Siauliai University, Šiauliai, 76352 Lithuania |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/amt-2018-432 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10877 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2723 |
| primary_topic.subfield.display_name | Immunology and Allergy |
| primary_topic.display_name | Allergic Rhinitis and Sensitization |
| related_works | https://openalex.org/W4232614449, https://openalex.org/W3089050175, https://openalex.org/W3172328272, https://openalex.org/W2317811690, https://openalex.org/W2979692263, https://openalex.org/W2264411797, https://openalex.org/W1517492052, https://openalex.org/W2792318691, https://openalex.org/W2417364671, https://openalex.org/W2189388416 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/amt-2018-432 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/amt-2018-432 |
| primary_location.id | doi:10.5194/amt-2018-432 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/amt-2018-432 |
| publication_date | 2019-01-21 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.% | 225 |
| abstract_inverted_index.5 | 228 |
| abstract_inverted_index.a | 11, 30, 183, 300 |
| abstract_inverted_index.11 | 231 |
| abstract_inverted_index.80 | 224 |
| abstract_inverted_index.In | 21, 290 |
| abstract_inverted_index.It | 197 |
| abstract_inverted_index.an | 310 |
| abstract_inverted_index.at | 141 |
| abstract_inverted_index.be | 284 |
| abstract_inverted_index.by | 317 |
| abstract_inverted_index.in | 69, 116, 201 |
| abstract_inverted_index.is | 3, 27, 38, 88, 262, 307, 319 |
| abstract_inverted_index.no | 79 |
| abstract_inverted_index.of | 13, 75, 84, 93, 152, 186, 192, 213, 218, 230, 271, 277, 286, 312 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.so | 47 |
| abstract_inverted_index.to | 17, 56, 64, 89, 101, 168, 283, 292, 297 |
| abstract_inverted_index.up | 241 |
| abstract_inverted_index.For | 173 |
| abstract_inverted_index.The | 82, 108, 128, 216 |
| abstract_inverted_index.and | 44, 58, 100, 119, 125, 136, 163, 189, 206, 249, 252, 254, 309 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.for | 72, 112, 144, 227, 265 |
| abstract_inverted_index.new | 62, 95 |
| abstract_inverted_index.one | 285 |
| abstract_inverted_index.out | 229 |
| abstract_inverted_index.the | 5, 49, 76, 85, 91, 94, 103, 137, 148, 153, 164, 170, 174, 178, 190, 266, 294, 304, 313 |
| abstract_inverted_index.was | 110, 180, 195, 198 |
| abstract_inverted_index.Both | 150 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.both | 204 |
| abstract_inverted_index.can, | 68 |
| abstract_inverted_index.data | 51, 77, 124, 131 |
| abstract_inverted_index.each | 145, 280 |
| abstract_inverted_index.fall | 211 |
| abstract_inverted_index.goal | 83 |
| abstract_inverted_index.most | 22 |
| abstract_inverted_index.that | 48, 200 |
| abstract_inverted_index.this | 202 |
| abstract_inverted_index.trap | 34 |
| abstract_inverted_index.ways | 288 |
| abstract_inverted_index.were | 156, 166 |
| abstract_inverted_index.with | 9, 78, 121, 158, 182, 242, 274, 303 |
| abstract_inverted_index.(ANN) | 162 |
| abstract_inverted_index.Hirst | 305 |
| abstract_inverted_index.Plair | 96 |
| abstract_inverted_index.about | 10 |
| abstract_inverted_index.allow | 71 |
| abstract_inverted_index.among | 4, 237 |
| abstract_inverted_index.based | 28, 208 |
| abstract_inverted_index.case, | 203 |
| abstract_inverted_index.first | 175 |
| abstract_inverted_index.group | 281 |
| abstract_inverted_index.human | 80 |
| abstract_inverted_index.issue | 311 |
| abstract_inverted_index.large | 184 |
| abstract_inverted_index.order | 291 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.seems | 282 |
| abstract_inverted_index.short | 212, 301 |
| abstract_inverted_index.shown | 199 |
| abstract_inverted_index.these | 219, 259 |
| abstract_inverted_index.three | 113, 243 |
| abstract_inverted_index.time, | 46 |
| abstract_inverted_index.times | 143 |
| abstract_inverted_index.type. | 172 |
| abstract_inverted_index.types | 188 |
| abstract_inverted_index.(Salix | 251 |
| abstract_inverted_index.Betula | 248 |
| abstract_inverted_index.Serbia | 118 |
| abstract_inverted_index.Within | 258 |
| abstract_inverted_index.always | 53 |
| abstract_inverted_index.better | 222 |
| abstract_inverted_index.ending | 240 |
| abstract_inverted_index.images | 135 |
| abstract_inverted_index.inside | 279 |
| abstract_inverted_index.method | 37 |
| abstract_inverted_index.narrow | 41 |
| abstract_inverted_index.neural | 160 |
| abstract_inverted_index.obtain | 169 |
| abstract_inverted_index.output | 130, 155 |
| abstract_inverted_index.pollen | 25, 33, 50, 66, 98, 105, 171, 187, 261, 278, 315 |
| abstract_inverted_index.showed | 235 |
| abstract_inverted_index.(Alnus, | 246 |
| abstract_inverted_index.Rapid-E | 97, 129, 154, 318 |
| abstract_inverted_index.allergy | 2 |
| abstract_inverted_index.connect | 293 |
| abstract_inverted_index.current | 86 |
| abstract_inverted_index.device. | 149 |
| abstract_inverted_index.devices | 114 |
| abstract_inverted_index.groups, | 260 |
| abstract_inverted_index.groups: | 245 |
| abstract_inverted_index.include | 132 |
| abstract_inverted_index.located | 115 |
| abstract_inverted_index.method. | 35 |
| abstract_inverted_index.monitor | 99, 179 |
| abstract_inverted_index.quality | 191 |
| abstract_inverted_index.quarter | 12 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.several | 142 |
| abstract_inverted_index.species | 239 |
| abstract_inverted_index.spectra | 139, 234 |
| abstract_inverted_index.subject | 55 |
| abstract_inverted_index.treated | 157 |
| abstract_inverted_index.variety | 185 |
| abstract_inverted_index.various | 18 |
| abstract_inverted_index.Corylus, | 247 |
| abstract_inverted_index.Emerging | 61 |
| abstract_inverted_index.European | 14, 23 |
| abstract_inverted_index.accuracy | 226 |
| abstract_inverted_index.combined | 167 |
| abstract_inverted_index.delayed, | 54 |
| abstract_inverted_index.evaluate | 90 |
| abstract_inverted_index.existing | 298 |
| abstract_inverted_index.networks | 161 |
| abstract_inverted_index.particle | 146 |
| abstract_inverted_index.possible | 287 |
| abstract_inverted_index.quality. | 215 |
| abstract_inverted_index.reaching | 147 |
| abstract_inverted_index.recorded | 140 |
| abstract_inverted_index.requires | 40 |
| abstract_inverted_index.species. | 232 |
| abstract_inverted_index.(Festuca, | 255 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Populus), | 253 |
| abstract_inverted_index.Quercus), | 250 |
| abstract_inverted_index.abilities | 43 |
| abstract_inverted_index.automatic | 65 |
| abstract_inverted_index.construct | 102 |
| abstract_inverted_index.different | 238 |
| abstract_inverted_index.diseases, | 8 |
| abstract_inverted_index.exceeding | 223 |
| abstract_inverted_index.forwards. | 289 |
| abstract_inverted_index.performed | 111, 221 |
| abstract_inverted_index.presented | 308 |
| abstract_inverted_index.real-time | 73 |
| abstract_inverted_index.sampling- | 57 |
| abstract_inverted_index.sensitive | 16 |
| abstract_inverted_index.Artemisia, | 256 |
| abstract_inverted_index.Hirst-type | 32 |
| abstract_inverted_index.Lithuania, | 117 |
| abstract_inverted_index.acceptable | 214 |
| abstract_inverted_index.algorithm. | 107 |
| abstract_inverted_index.algorithms | 210, 220, 273 |
| abstract_inverted_index.approaches | 63 |
| abstract_inverted_index.artificial | 159 |
| abstract_inverted_index.challenged | 181 |
| abstract_inverted_index.comparison | 302 |
| abstract_inverted_index.countries, | 24 |
| abstract_inverted_index.detections | 316 |
| abstract_inverted_index.discussed. | 320 |
| abstract_inverted_index.evaluated. | 196 |
| abstract_inverted_index.evaluation | 109 |
| abstract_inverted_index.experiment | 296 |
| abstract_inverted_index.modalities | 151 |
| abstract_inverted_index.monitoring | 67 |
| abstract_inverted_index.population | 15 |
| abstract_inverted_index.principle, | 70 |
| abstract_inverted_index.procedure. | 269 |
| abstract_inverted_index.scattering | 134 |
| abstract_inverted_index.sequential | 275 |
| abstract_inverted_index.Juniperus). | 257 |
| abstract_inverted_index.algorithms. | 127 |
| abstract_inverted_index.atmospheric | 19 |
| abstract_inverted_index.calibration | 123 |
| abstract_inverted_index.experiment, | 177 |
| abstract_inverted_index.first-level | 104, 267 |
| abstract_inverted_index.independent | 122 |
| abstract_inverted_index.information | 26 |
| abstract_inverted_index.multi-angle | 133 |
| abstract_inverted_index.multi-steps | 272 |
| abstract_inverted_index.practically | 263 |
| abstract_inverted_index.recognition | 106, 209, 268 |
| abstract_inverted_index.scattering- | 205 |
| abstract_inverted_index.substantial | 45 |
| abstract_inverted_index.technology, | 299 |
| abstract_inverted_index.Construction | 270 |
| abstract_inverted_index.Fluorescence | 233 |
| abstract_inverted_index.Switzerland, | 120 |
| abstract_inverted_index.availability | 74 |
| abstract_inverted_index.bioaerosols. | 20 |
| abstract_inverted_index.capabilities | 92 |
| abstract_inverted_index.combinations | 217 |
| abstract_inverted_index.fluorescence | 138 |
| abstract_inverted_index.involvement. | 81 |
| abstract_inverted_index.many-to-many | 193 |
| abstract_inverted_index.measurements | 306 |
| abstract_inverted_index.similarities | 236 |
| abstract_inverted_index.weekly-cycle | 31 |
| abstract_inverted_index.fluorescence- | 207 |
| abstract_inverted_index.well-resolved | 244 |
| abstract_inverted_index.Pollen-induced | 1 |
| abstract_inverted_index.classification | 126, 176, 194, 295 |
| abstract_inverted_index.discrimination | 276 |
| abstract_inverted_index.false-positive | 314 |
| abstract_inverted_index.most-prevalent | 6 |
| abstract_inverted_index.non-contagious | 7 |
| abstract_inverted_index.specialization | 42 |
| abstract_inverted_index.uncertainties. | 60 |
| abstract_inverted_index.counting-related | 59 |
| abstract_inverted_index.labour-intensive, | 39 |
| abstract_inverted_index.non-distinguishable | 264 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5033362100 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I162380102 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.78438031 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |