Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.3607712
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://hal.science/hal-04967611
- OA Status
- green
- References
- 14
- Related Works
- 1
- OpenAlex ID
- https://openalex.org/W3015217940
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3015217940Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.3607712Digital Object Identifier
- Title
-
Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented BuildingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-07Full publication date if available
- Authors
-
Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur AbdelkrimList of authors in order
- Landing page
-
https://hal.science/hal-04967611Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.science/hal-04967611Direct OA link when available
- Concepts
-
Thresholding, Data set, Computer science, Set (abstract data type), Artificial intelligence, Data mining, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
1Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3015217940 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.3607712 |
| ids.doi | https://doi.org/10.5281/zenodo.3607712 |
| ids.mag | 3015217940 |
| ids.openalex | https://openalex.org/W3015217940 |
| fwci | 0.0 |
| type | article |
| title | Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9908000230789185 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.949400007724762 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Water Systems and Optimization |
| topics[2].id | https://openalex.org/T10121 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9480999708175659 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Building Energy and Comfort Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C191178318 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6428996324539185 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[0].display_name | Thresholding |
| concepts[1].id | https://openalex.org/C58489278 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5447876453399658 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[1].display_name | Data set |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5264830589294434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5072528719902039 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44945991039276123 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3484227657318115 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/thresholding |
| keywords[0].score | 0.6428996324539185 |
| keywords[0].display_name | Thresholding |
| keywords[1].id | https://openalex.org/keywords/data-set |
| keywords[1].score | 0.5447876453399658 |
| keywords[1].display_name | Data set |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5264830589294434 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.5072528719902039 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44945991039276123 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3484227657318115 |
| keywords[5].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:HAL:hal-04967611v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402512 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[0].source.host_organization | https://openalex.org/I1294671590 |
| locations[0].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[0].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Conference papers |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | 11th KES International Conference on Sustainability and Energy in Buildings 2019, Jan 2019, Rome, Italy |
| locations[0].landing_page_url | https://hal.science/hal-04967611 |
| locations[1].id | doi:10.5281/zenodo.3607712 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.3607712 |
| locations[2].id | doi:10.5281/zenodo.3607713 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.5281/zenodo.3607713 |
| locations[3].id | mag:3015217940 |
| locations[3].is_oa | False |
| locations[3].source | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://panel.waset.org/Publications/automatic-thresholding-for-data-gap-detection-for-a-set-of-sensors-in-instrumented-buildings/10009912 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5022637246 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5291-7297 |
| authorships[0].author.display_name | Houda Najeh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Houda Najeh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033251925 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8554-5901 |
| authorships[1].author.display_name | Stéphane Ploix |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stéphane Ploix |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054313614 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6251-8097 |
| authorships[2].author.display_name | Mahendra Pratap Singh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mahendra Pratap Singh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020330364 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2377-7205 |
| authorships[3].author.display_name | Karim Chabir |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Karim Chabir |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5107846236 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mohamed Naceur Abdelkrim |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Mohamed Naceur Abdelkrim |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.science/hal-04967611 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9908000230789185 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W1511544860 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:HAL:hal-04967611v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference papers |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | 11th KES International Conference on Sustainability and Energy in Buildings 2019, Jan 2019, Rome, Italy |
| best_oa_location.landing_page_url | https://hal.science/hal-04967611 |
| primary_location.id | pmh:oai:HAL:hal-04967611v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402512 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| primary_location.source.host_organization | https://openalex.org/I1294671590 |
| primary_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| primary_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Conference papers |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | 11th KES International Conference on Sustainability and Energy in Buildings 2019, Jan 2019, Rome, Italy |
| primary_location.landing_page_url | https://hal.science/hal-04967611 |
| publication_date | 2019-01-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2364050627, https://openalex.org/W2591591405, https://openalex.org/W2025271293, https://openalex.org/W2002218489, https://openalex.org/W2044535354, https://openalex.org/W2521149711, https://openalex.org/W2122053769, https://openalex.org/W1501500081, https://openalex.org/W2804368419, https://openalex.org/W2150015649, https://openalex.org/W639907764, https://openalex.org/W1532626186, https://openalex.org/W1983248755, https://openalex.org/W1985995825 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 87, 151 |
| abstract_inverted_index.30 | 164 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.an | 67, 155 |
| abstract_inverted_index.at | 157 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.in | 33, 44, 72, 105 |
| abstract_inverted_index.is | 118, 131, 145 |
| abstract_inverted_index.of | 8, 30, 51, 59, 70, 89, 128, 135, 142 |
| abstract_inverted_index.on | 38, 147 |
| abstract_inverted_index.to | 5, 99, 116 |
| abstract_inverted_index.So, | 113 |
| abstract_inverted_index.The | 75, 126, 140 |
| abstract_inverted_index.all | 50 |
| abstract_inverted_index.and | 10, 17, 56 |
| abstract_inverted_index.are | 2, 97, 109 |
| abstract_inverted_index.but | 49 |
| abstract_inverted_index.for | 41, 82, 86, 133 |
| abstract_inverted_index.gap | 84 |
| abstract_inverted_index.not | 64 |
| abstract_inverted_index.set | 88 |
| abstract_inverted_index.the | 22, 28, 73, 79, 114, 138, 143 |
| abstract_inverted_index.use | 127 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.also | 63 |
| abstract_inverted_index.been | 47, 65 |
| abstract_inverted_index.bias | 55 |
| abstract_inverted_index.data | 60, 83 |
| abstract_inverted_index.from | 119, 150 |
| abstract_inverted_index.gaps | 61 |
| abstract_inverted_index.have | 62 |
| abstract_inverted_index.only | 54 |
| abstract_inverted_index.real | 152 |
| abstract_inverted_index.span | 69 |
| abstract_inverted_index.them | 52 |
| abstract_inverted_index.time | 102, 129 |
| abstract_inverted_index.could | 20 |
| abstract_inverted_index.delay | 121 |
| abstract_inverted_index.fact, | 13 |
| abstract_inverted_index.given | 66 |
| abstract_inverted_index.grids | 43 |
| abstract_inverted_index.issue | 115 |
| abstract_inverted_index.kinds | 7 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.power | 153 |
| abstract_inverted_index.solve | 117 |
| abstract_inverted_index.treat | 53 |
| abstract_inverted_index.which | 120 |
| abstract_inverted_index.Sensor | 95 |
| abstract_inverted_index.affect | 21 |
| abstract_inverted_index.be<br> | 100 |
| abstract_inverted_index.become | 124 |
| abstract_inverted_index.faults | 9 |
| abstract_inverted_index.highly | 3 |
| abstract_inverted_index.in<br> | 92 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.of<br> | 160 |
| abstract_inverted_index.office | 156 |
| abstract_inverted_index.on<br> | 137 |
| abstract_inverted_index.plant: | 154 |
| abstract_inverted_index.sensor | 42, 107, 123 |
| abstract_inverted_index.series | 130 |
| abstract_inverted_index.values | 108 |
| abstract_inverted_index.delays. | 139 |
| abstract_inverted_index.faults, | 15 |
| abstract_inverted_index.faulty? | 125 |
| abstract_inverted_index.not<br> | 110 |
| abstract_inverted_index.regular | 101 |
| abstract_inverted_index.sensors | 32, 91 |
| abstract_inverted_index.series. | 103 |
| abstract_inverted_index.surveys | 37 |
| abstract_inverted_index.systems | 1 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.Building | 0 |
| abstract_inverted_index.Grenoble | 158 |
| abstract_inverted_index.However, | 104 |
| abstract_inverted_index.adequate | 68 |
| abstract_inverted_index.building | 23 |
| abstract_inverted_index.each<br> | 122 |
| abstract_inverted_index.equipped | 162 |
| abstract_inverted_index.failures | 16 |
| abstract_inverted_index.have<br> | 46 |
| abstract_inverted_index.obtained | 149 |
| abstract_inverted_index.proposed | 76 |
| abstract_inverted_index.reality, | 106 |
| abstract_inverted_index.required | 132 |
| abstract_inverted_index.sampled. | 112 |
| abstract_inverted_index.sensors. | 165 |
| abstract_inverted_index.Different | 35 |
| abstract_inverted_index.Institute | 159 |
| abstract_inverted_index.academia. | 74 |
| abstract_inverted_index.automatic | 80 |
| abstract_inverted_index.behaviors | 19 |
| abstract_inverted_index.buildings | 45 |
| abstract_inverted_index.comprises | 78 |
| abstract_inverted_index.detection | 29, 85, 134 |
| abstract_inverted_index.diagnosis | 39 |
| abstract_inverted_index.evaluated | 146 |
| abstract_inverted_index.failures. | 11 |
| abstract_inverted_index.human<br> | 18 |
| abstract_inverted_index.outliers. | 57 |
| abstract_inverted_index.published | 48 |
| abstract_inverted_index.uniformly | 111 |
| abstract_inverted_index.buildings. | 34, 94 |
| abstract_inverted_index.considered | 98 |
| abstract_inverted_index.efficiency | 141 |
| abstract_inverted_index.techniques | 40 |
| abstract_inverted_index.technology | 161 |
| abstract_inverted_index.unreliable | 31 |
| abstract_inverted_index.vulnerable | 4 |
| abstract_inverted_index.methodology | 77 |
| abstract_inverted_index.tackles<br> | 27 |
| abstract_inverted_index.instrumented | 93 |
| abstract_inverted_index.measurements | 96 |
| abstract_inverted_index.performance. | 24 |
| abstract_inverted_index.abnormalities | 136 |
| abstract_inverted_index.attention<br> | 71 |
| abstract_inverted_index.different<br> | 6 |
| abstract_inverted_index.heterogeneous | 90 |
| abstract_inverted_index.Occurences<br> | 58 |
| abstract_inverted_index.literature<br> | 36 |
| abstract_inverted_index.measurements<br> | 148 |
| abstract_inverted_index.thresholding<br> | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.20627495 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |