Automatic UAV-based airport pavement inspection using mixed real and virtual scenarios Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1117/12.2679734
Runway and taxiway pavements are exposed to high stress during their\nprojected lifetime, which inevitably leads to a decrease in their condition\nover time. To make sure airport pavement condition ensure uninterrupted and\nresilient operations, it is of utmost importance to monitor their condition and\nconduct regular inspections. UAV-based inspection is recently gaining\nimportance due to its wide range monitoring capabilities and reduced cost. In\nthis work, we propose a vision-based approach to automatically identify\npavement distress using images captured by UAVs. The proposed method is based\non Deep Learning (DL) to segment defects in the image. The DL architecture\nleverages the low computational capacities of embedded systems in UAVs by using\nan optimised implementation of EfficientNet feature extraction and Feature\nPyramid Network segmentation. To deal with the lack of annotated data for\ntraining we have developed a synthetic dataset generation methodology to extend\navailable distress datasets. We demonstrate that the use of a mixed dataset\ncomposed of synthetic and real training images yields better results when\ntesting the training models in real application scenarios.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1117/12.2679734
- OA Status
- green
- Cited By
- 4
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379653618
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379653618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1117/12.2679734Digital Object Identifier
- Title
-
Automatic UAV-based airport pavement inspection using mixed real and virtual scenariosWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-07Full publication date if available
- Authors
-
Pablo Alonso, Jon Ander Íñiguez de Gordoa, Juan Diego Ortega, Sara García, Francisco Javier Iriarte, Marcos NietoList of authors in order
- Landing page
-
https://doi.org/10.1117/12.2679734Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.06019Direct OA link when available
- Concepts
-
Computer science, Runway, Feature (linguistics), Pyramid (geometry), Segmentation, Feature extraction, Artificial intelligence, Deep learning, Range (aeronautics), Real-time computing, Engineering, Archaeology, History, Optics, Philosophy, Aerospace engineering, Physics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379653618 |
|---|---|
| doi | https://doi.org/10.1117/12.2679734 |
| ids.doi | https://doi.org/10.1117/12.2679734 |
| ids.openalex | https://openalex.org/W4379653618 |
| fwci | 0.81802794 |
| type | preprint |
| title | Automatic UAV-based airport pavement inspection using mixed real and virtual scenarios |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10264 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9789000153541565 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Asphalt Pavement Performance Evaluation |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7578811645507812 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81155309 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7288732528686523 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q184590 |
| concepts[1].display_name | Runway |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5812617540359497 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C142575187 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5611464381217957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[3].display_name | Pyramid (geometry) |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5526793003082275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5275684595108032 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46982669830322266 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4616805911064148 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C204323151 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43218812346458435 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[8].display_name | Range (aeronautics) |
| concepts[9].id | https://openalex.org/C79403827 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3758505582809448 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[9].display_name | Real-time computing |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16483420133590698 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C95457728 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[12].display_name | History |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C146978453 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[15].display_name | Aerospace engineering |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7578811645507812 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/runway |
| keywords[1].score | 0.7288732528686523 |
| keywords[1].display_name | Runway |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.5812617540359497 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/pyramid |
| keywords[3].score | 0.5611464381217957 |
| keywords[3].display_name | Pyramid (geometry) |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5526793003082275 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5275684595108032 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.46982669830322266 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4616805911064148 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/range |
| keywords[8].score | 0.43218812346458435 |
| keywords[8].display_name | Range (aeronautics) |
| keywords[9].id | https://openalex.org/keywords/real-time-computing |
| keywords[9].score | 0.3758505582809448 |
| keywords[9].display_name | Real-time computing |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.16483420133590698 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1117/12.2679734 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Fifteenth International Conference on Machine Vision (ICMV 2022) |
| locations[0].landing_page_url | https://doi.org/10.1117/12.2679734 |
| locations[1].id | pmh:oai:arXiv.org:2401.06019 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2401.06019 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2401.06019 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5101833830 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9650-0525 |
| authorships[0].author.display_name | Pablo Alonso |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[0].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[0].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[0].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Vicomtech |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pablo Alonso |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[1].author.id | https://openalex.org/A5065486214 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9008-5620 |
| authorships[1].author.display_name | Jon Ander Íñiguez de Gordoa |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[1].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[1].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[1].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Vicomtech |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jon Ander Iñiguez de Gordoa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[2].author.id | https://openalex.org/A5036304636 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5539-106X |
| authorships[2].author.display_name | Juan Diego Ortega |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[2].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[2].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[2].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Vicomtech |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Juan Diego Ortega |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[3].author.id | https://openalex.org/A5100607240 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3608-1415 |
| authorships[3].author.display_name | Sara García |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[3].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[3].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[3].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Vicomtech |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sara García |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[4].author.id | https://openalex.org/A5020170796 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1303-6526 |
| authorships[4].author.display_name | Francisco Javier Iriarte |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[4].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[4].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[4].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Vicomtech |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Francisco Javier Iriarte |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[5].author.id | https://openalex.org/A5016319496 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9879-0992 |
| authorships[5].author.display_name | Marcos Nieto |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210092551 |
| authorships[5].affiliations[0].raw_affiliation_string | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| authorships[5].institutions[0].id | https://openalex.org/I4210092551 |
| authorships[5].institutions[0].ror | https://ror.org/0023sah13 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210092551 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Vicomtech |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Marcos Nieto |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Fundación Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastián (Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.06019 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-08T00:00:00 |
| display_name | Automatic UAV-based airport pavement inspection using mixed real and virtual scenarios |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W1578981866, https://openalex.org/W2373284441, https://openalex.org/W2887100346, https://openalex.org/W2056834547, https://openalex.org/W2753632835, https://openalex.org/W2102868673, https://openalex.org/W4322506511, https://openalex.org/W4362495656, https://openalex.org/W617408315, https://openalex.org/W146542191 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.06019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.06019 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.06019 |
| primary_location.id | doi:10.1117/12.2679734 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Fifteenth International Conference on Machine Vision (ICMV 2022) |
| primary_location.landing_page_url | https://doi.org/10.1117/12.2679734 |
| publication_date | 2023-06-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3119299588, https://openalex.org/W2810063804, https://openalex.org/W3001456352, https://openalex.org/W2135445305, https://openalex.org/W2912350898, https://openalex.org/W3125935532, https://openalex.org/W2754796650, https://openalex.org/W2615547864, https://openalex.org/W2962914239, https://openalex.org/W2407692387, https://openalex.org/W2735386636, https://openalex.org/W4300900294, https://openalex.org/W2565639579, https://openalex.org/W2331011752, https://openalex.org/W4236345650, https://openalex.org/W4230056077, https://openalex.org/W2899242765, https://openalex.org/W2156163116, https://openalex.org/W3036991312, https://openalex.org/W2955425717, https://openalex.org/W3194006183, https://openalex.org/W4206126395, https://openalex.org/W2902195199, https://openalex.org/W2964308596, https://openalex.org/W4200629655, https://openalex.org/W2116046277, https://openalex.org/W3099564553, https://openalex.org/W2511065100, https://openalex.org/W4206836662 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 16, 63, 125, 140 |
| abstract_inverted_index.DL | 90 |
| abstract_inverted_index.To | 22, 113 |
| abstract_inverted_index.We | 134 |
| abstract_inverted_index.by | 73, 101 |
| abstract_inverted_index.in | 18, 86, 99, 156 |
| abstract_inverted_index.is | 33, 46, 78 |
| abstract_inverted_index.it | 32 |
| abstract_inverted_index.of | 34, 96, 105, 118, 139, 143 |
| abstract_inverted_index.to | 6, 15, 37, 50, 66, 83, 130 |
| abstract_inverted_index.we | 61, 122 |
| abstract_inverted_index.The | 75, 89 |
| abstract_inverted_index.and | 1, 56, 109, 145 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.its | 51 |
| abstract_inverted_index.low | 93 |
| abstract_inverted_index.the | 87, 92, 116, 137, 153 |
| abstract_inverted_index.use | 138 |
| abstract_inverted_index.(DL) | 82 |
| abstract_inverted_index.Deep | 80 |
| abstract_inverted_index.UAVs | 100 |
| abstract_inverted_index.data | 120 |
| abstract_inverted_index.deal | 114 |
| abstract_inverted_index.have | 123 |
| abstract_inverted_index.high | 7 |
| abstract_inverted_index.lack | 117 |
| abstract_inverted_index.make | 23 |
| abstract_inverted_index.real | 146, 157 |
| abstract_inverted_index.sure | 24 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.wide | 52 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.UAVs. | 74 |
| abstract_inverted_index.cost. | 58 |
| abstract_inverted_index.leads | 14 |
| abstract_inverted_index.mixed | 141 |
| abstract_inverted_index.range | 53 |
| abstract_inverted_index.their | 19, 39 |
| abstract_inverted_index.time. | 21 |
| abstract_inverted_index.using | 70 |
| abstract_inverted_index.which | 12 |
| abstract_inverted_index.work, | 60 |
| abstract_inverted_index.Runway | 0 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.during | 9 |
| abstract_inverted_index.ensure | 28 |
| abstract_inverted_index.image. | 88 |
| abstract_inverted_index.images | 71, 148 |
| abstract_inverted_index.method | 77 |
| abstract_inverted_index.models | 155 |
| abstract_inverted_index.stress | 8 |
| abstract_inverted_index.utmost | 35 |
| abstract_inverted_index.yields | 149 |
| abstract_inverted_index.Network | 111 |
| abstract_inverted_index.airport | 25 |
| abstract_inverted_index.dataset | 127 |
| abstract_inverted_index.defects | 85 |
| abstract_inverted_index.exposed | 5 |
| abstract_inverted_index.feature | 107 |
| abstract_inverted_index.monitor | 38 |
| abstract_inverted_index.propose | 62 |
| abstract_inverted_index.reduced | 57 |
| abstract_inverted_index.regular | 42 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.segment | 84 |
| abstract_inverted_index.systems | 98 |
| abstract_inverted_index.taxiway | 2 |
| abstract_inverted_index.In\nthis | 59 |
| abstract_inverted_index.Learning | 81 |
| abstract_inverted_index.approach | 65 |
| abstract_inverted_index.captured | 72 |
| abstract_inverted_index.decrease | 17 |
| abstract_inverted_index.distress | 69, 132 |
| abstract_inverted_index.embedded | 97 |
| abstract_inverted_index.pavement | 26 |
| abstract_inverted_index.proposed | 76 |
| abstract_inverted_index.recently | 47 |
| abstract_inverted_index.training | 147, 154 |
| abstract_inverted_index.UAV-based | 44 |
| abstract_inverted_index.annotated | 119 |
| abstract_inverted_index.based\non | 79 |
| abstract_inverted_index.condition | 27, 40 |
| abstract_inverted_index.datasets. | 133 |
| abstract_inverted_index.developed | 124 |
| abstract_inverted_index.lifetime, | 11 |
| abstract_inverted_index.optimised | 103 |
| abstract_inverted_index.pavements | 3 |
| abstract_inverted_index.synthetic | 126, 144 |
| abstract_inverted_index.using\nan | 102 |
| abstract_inverted_index.capacities | 95 |
| abstract_inverted_index.extraction | 108 |
| abstract_inverted_index.generation | 128 |
| abstract_inverted_index.importance | 36 |
| abstract_inverted_index.inevitably | 13 |
| abstract_inverted_index.inspection | 45 |
| abstract_inverted_index.monitoring | 54 |
| abstract_inverted_index.application | 158 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.methodology | 129 |
| abstract_inverted_index.operations, | 31 |
| abstract_inverted_index.EfficientNet | 106 |
| abstract_inverted_index.and\nconduct | 41 |
| abstract_inverted_index.capabilities | 55 |
| abstract_inverted_index.inspections. | 43 |
| abstract_inverted_index.scenarios.\n | 159 |
| abstract_inverted_index.vision-based | 64 |
| abstract_inverted_index.automatically | 67 |
| abstract_inverted_index.computational | 94 |
| abstract_inverted_index.for\ntraining | 121 |
| abstract_inverted_index.segmentation. | 112 |
| abstract_inverted_index.uninterrupted | 29 |
| abstract_inverted_index.when\ntesting | 152 |
| abstract_inverted_index.and\nresilient | 30 |
| abstract_inverted_index.implementation | 104 |
| abstract_inverted_index.condition\nover | 20 |
| abstract_inverted_index.Feature\nPyramid | 110 |
| abstract_inverted_index.their\nprojected | 10 |
| abstract_inverted_index.dataset\ncomposed | 142 |
| abstract_inverted_index.extend\navailable | 131 |
| abstract_inverted_index.identify\npavement | 68 |
| abstract_inverted_index.gaining\nimportance | 48 |
| abstract_inverted_index.architecture\nleverages | 91 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101833830 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210092551 |
| citation_normalized_percentile.value | 0.66673777 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |