Automatic uncovering of patient primary concerns in portal messages using a fusion framework of pretrained language models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/jamia/ocae144
Objectives The surge in patient portal messages (PPMs) with increasing needs and workloads for efficient PPM triage in healthcare settings has spurred the exploration of AI-driven solutions to streamline the healthcare workflow processes, ensuring timely responses to patients to satisfy their healthcare needs. However, there has been less focus on isolating and understanding patient primary concerns in PPMs—a practice which holds the potential to yield more nuanced insights and enhances the quality of healthcare delivery and patient-centered care. Materials and Methods We propose a fusion framework to leverage pretrained language models (LMs) with different language advantages via a Convolution Neural Network for precise identification of patient primary concerns via multi-class classification. We examined 3 traditional machine learning models, 9 BERT-based language models, 6 fusion models, and 2 ensemble models. Results The outcomes of our experimentation underscore the superior performance achieved by BERT-based models in comparison to traditional machine learning models. Remarkably, our fusion model emerges as the top-performing solution, delivering a notably improved accuracy score of 77.67 ± 2.74% and an F1 score of 74.37 ± 3.70% in macro-average. Discussion This study highlights the feasibility and effectiveness of multi-class classification for patient primary concern detection and the proposed fusion framework for enhancing primary concern detection. Conclusions The use of multi-class classification enhanced by a fusion of multiple pretrained LMs not only improves the accuracy and efficiency of patient primary concern identification in PPMs but also aids in managing the rising volume of PPMs in healthcare, ensuring critical patient communications are addressed promptly and accurately.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamia/ocae144
- https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdf
- OA Status
- hybrid
- Cited By
- 4
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400090543
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400090543Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamia/ocae144Digital Object Identifier
- Title
-
Automatic uncovering of patient primary concerns in portal messages using a fusion framework of pretrained language modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-27Full publication date if available
- Authors
-
Yang Ren, Yuqi Wu, Jungwei Fan, Aditya Khurana, Sunyang Fu, Dezhi Wu, Hongfang Liu, Ming HuangList of authors in order
- Landing page
-
https://doi.org/10.1093/jamia/ocae144Publisher landing page
- PDF URL
-
https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdfDirect OA link when available
- Concepts
-
Triage, Computer science, Leverage (statistics), Machine learning, Workflow, Artificial intelligence, Identification (biology), Class (philosophy), Language model, Health care, Natural language processing, Medicine, Medical emergency, Biology, Database, Botany, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400090543 |
|---|---|
| doi | https://doi.org/10.1093/jamia/ocae144 |
| ids.doi | https://doi.org/10.1093/jamia/ocae144 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38934289 |
| ids.openalex | https://openalex.org/W4400090543 |
| fwci | 6.02729457 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000072638 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Patient Portals |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009323 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Natural Language Processing |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000072638 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Patient Portals |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069550 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Machine Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D009323 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Natural Language Processing |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000072638 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Patient Portals |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D016571 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Neural Networks, Computer |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D009323 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Natural Language Processing |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000072638 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Patient Portals |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D016571 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Neural Networks, Computer |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D009323 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Natural Language Processing |
| type | article |
| title | Automatic uncovering of patient primary concerns in portal messages using a fusion framework of pretrained language models |
| awards[0].id | https://openalex.org/G1021289384 |
| awards[0].funder_id | https://openalex.org/F4320337472 |
| awards[0].display_name | |
| awards[0].funder_award_id | UL1TR002377 |
| awards[0].funder_display_name | National Center for Advancing Translational Sciences |
| awards[1].id | https://openalex.org/G541000183 |
| awards[1].funder_id | https://openalex.org/F4320337372 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01-LM011934 |
| awards[1].funder_display_name | U.S. National Library of Medicine |
| biblio.issue | 8 |
| biblio.volume | 31 |
| biblio.last_page | 1724 |
| biblio.first_page | 1714 |
| topics[0].id | https://openalex.org/T11095 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2711 |
| topics[0].subfield.display_name | Emergency Medicine |
| topics[0].display_name | Emergency and Acute Care Studies |
| topics[1].id | https://openalex.org/T10350 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9929999709129333 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Electronic Health Records Systems |
| topics[2].id | https://openalex.org/T11722 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Patient Satisfaction in Healthcare |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337372 |
| funders[1].ror | https://ror.org/0060t0j89 |
| funders[1].display_name | U.S. National Library of Medicine |
| funders[2].id | https://openalex.org/F4320337472 |
| funders[2].ror | https://ror.org/04pw6fb54 |
| funders[2].display_name | National Center for Advancing Translational Sciences |
| is_xpac | False |
| apc_list.value | 3967 |
| apc_list.currency | USD |
| apc_list.value_usd | 3967 |
| apc_paid.value | 3967 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3967 |
| concepts[0].id | https://openalex.org/C2777120189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7540592551231384 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q780067 |
| concepts[0].display_name | Triage |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7530339956283569 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7483664751052856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.639697790145874 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C177212765 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6324934363365173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[4].display_name | Workflow |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6297906041145325 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C116834253 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5168986320495605 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[6].display_name | Identification (biology) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49285268783569336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C137293760 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4475633502006531 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[8].display_name | Language model |
| concepts[9].id | https://openalex.org/C160735492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44274190068244934 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[9].display_name | Health care |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33912986516952515 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19682952761650085 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C545542383 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11378493905067444 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[12].display_name | Medical emergency |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C59822182 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[15].display_name | Botany |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/triage |
| keywords[0].score | 0.7540592551231384 |
| keywords[0].display_name | Triage |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7530339956283569 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.7483664751052856 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.639697790145874 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/workflow |
| keywords[4].score | 0.6324934363365173 |
| keywords[4].display_name | Workflow |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6297906041145325 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/identification |
| keywords[6].score | 0.5168986320495605 |
| keywords[6].display_name | Identification (biology) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.49285268783569336 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/language-model |
| keywords[8].score | 0.4475633502006531 |
| keywords[8].display_name | Language model |
| keywords[9].id | https://openalex.org/keywords/health-care |
| keywords[9].score | 0.44274190068244934 |
| keywords[9].display_name | Health care |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.33912986516952515 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.19682952761650085 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/medical-emergency |
| keywords[12].score | 0.11378493905067444 |
| keywords[12].display_name | Medical emergency |
| language | en |
| locations[0].id | doi:10.1093/jamia/ocae144 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S129839026 |
| locations[0].source.issn | 1067-5027, 1527-974X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1067-5027 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Medical Informatics Association |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Medical Informatics Association |
| locations[0].landing_page_url | https://doi.org/10.1093/jamia/ocae144 |
| locations[1].id | pmid:38934289 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the American Medical Informatics Association : JAMIA |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38934289 |
| locations[2].id | pmh:oai:digitalcommons.library.tmc.edu:uthshis_docs-1158 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401994 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DigtalCommons @ Texas Medical Center Library (Texas Medical Center) |
| locations[2].source.host_organization | https://openalex.org/I867280407 |
| locations[2].source.host_organization_name | The University of Texas Southwestern Medical Center |
| locations[2].source.host_organization_lineage | https://openalex.org/I867280407 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Faculty, Staff and Student Publications |
| locations[2].landing_page_url | https://digitalcommons.library.tmc.edu/uthshis_docs/161 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11258404 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Am Med Inform Assoc |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11258404 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100413313 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9831-6035 |
| authorships[0].author.display_name | Yang Ren |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of South Carolina , Columbia, SC 29208, United States |
| authorships[0].institutions[0].id | https://openalex.org/I155781252 |
| authorships[0].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of South Carolina |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Ren |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, University of South Carolina , Columbia, SC 29208, United States |
| authorships[1].author.id | https://openalex.org/A5085256849 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6244-0931 |
| authorships[1].author.display_name | Yuqi Wu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210146710 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[1].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[1].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuqi Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[2].author.id | https://openalex.org/A5043910718 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6349-3752 |
| authorships[2].author.display_name | Jungwei Fan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210146710 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[2].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[2].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jungwei W Fan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[3].author.id | https://openalex.org/A5086311504 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9148-9531 |
| authorships[3].author.display_name | Aditya Khurana |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330342723, https://openalex.org/I2802423016 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].ror | https://ror.org/02qp3tb03 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330342723 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mayo Clinic |
| authorships[3].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[3].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | WinnMed |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aditya Khurana |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[4].author.id | https://openalex.org/A5032226587 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1691-5179 |
| authorships[4].author.display_name | Sunyang Fu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| authorships[4].institutions[0].id | https://openalex.org/I919571938 |
| authorships[4].institutions[0].ror | https://ror.org/03gds6c39 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I919571938 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas Health Science Center at Houston |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sunyang Fu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| authorships[5].author.id | https://openalex.org/A5080246841 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3554-1136 |
| authorships[5].author.display_name | Dezhi Wu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Integrated Information Technology, University of South Carolina, Columbia, SC 29208, United States |
| authorships[5].institutions[0].id | https://openalex.org/I155781252 |
| authorships[5].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of South Carolina |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dezhi Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Integrated Information Technology, University of South Carolina, Columbia, SC 29208, United States |
| authorships[6].author.id | https://openalex.org/A5101585391 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2570-3741 |
| authorships[6].author.display_name | Hongfang Liu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| authorships[6].institutions[0].id | https://openalex.org/I919571938 |
| authorships[6].institutions[0].ror | https://ror.org/03gds6c39 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I919571938 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | The University of Texas Health Science Center at Houston |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hongfang Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| authorships[7].author.id | https://openalex.org/A5010869663 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7367-3626 |
| authorships[7].author.display_name | Ming Huang |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210146710 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States |
| authorships[7].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[7].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[7].institutions[1].id | https://openalex.org/I919571938 |
| authorships[7].institutions[1].ror | https://ror.org/03gds6c39 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I919571938 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | The University of Texas Health Science Center at Houston |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ming Huang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, United States, Department of Health Data Science and Artificial Intelligence, University of Texas Health Science Center at Houston , Houston, TX 77030, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-28T00:00:00 |
| display_name | Automatic uncovering of patient primary concerns in portal messages using a fusion framework of pretrained language models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11095 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2711 |
| primary_topic.subfield.display_name | Emergency Medicine |
| primary_topic.display_name | Emergency and Acute Care Studies |
| related_works | https://openalex.org/W1975091423, https://openalex.org/W2144451503, https://openalex.org/W2033023095, https://openalex.org/W125325933, https://openalex.org/W2941176721, https://openalex.org/W2051773733, https://openalex.org/W3015660457, https://openalex.org/W2909333182, https://openalex.org/W4241993668, https://openalex.org/W1996729302 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1093/jamia/ocae144 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S129839026 |
| best_oa_location.source.issn | 1067-5027, 1527-974X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1067-5027 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the American Medical Informatics Association |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the American Medical Informatics Association |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jamia/ocae144 |
| primary_location.id | doi:10.1093/jamia/ocae144 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S129839026 |
| primary_location.source.issn | 1067-5027, 1527-974X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1067-5027 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Medical Informatics Association |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/jamia/article-pdf/31/8/1714/58591192/ocae144.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Medical Informatics Association |
| primary_location.landing_page_url | https://doi.org/10.1093/jamia/ocae144 |
| publication_date | 2024-06-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1884436451, https://openalex.org/W3013414199, https://openalex.org/W3216484856, https://openalex.org/W2970901478, https://openalex.org/W2329789819, https://openalex.org/W3033549038, https://openalex.org/W2181550963, https://openalex.org/W6739478044, https://openalex.org/W3165393361, https://openalex.org/W2621349611, https://openalex.org/W4221129616, https://openalex.org/W2163670788, https://openalex.org/W2753001088, https://openalex.org/W2661359212, https://openalex.org/W6719986656, https://openalex.org/W4384561707, https://openalex.org/W2468628434, https://openalex.org/W3018312910, https://openalex.org/W2953343412, https://openalex.org/W2939931462, https://openalex.org/W2910152998, https://openalex.org/W6805478930, https://openalex.org/W2989199981, https://openalex.org/W3168951873, https://openalex.org/W6903918197, https://openalex.org/W4243150065, https://openalex.org/W3168997536, https://openalex.org/W3016463114, https://openalex.org/W4239025696, https://openalex.org/W2606042658, https://openalex.org/W3202548348, https://openalex.org/W3185341429, https://openalex.org/W2911489562, https://openalex.org/W3197974234, https://openalex.org/W3036390808, https://openalex.org/W4386334596, https://openalex.org/W4386110374, https://openalex.org/W6857563048, https://openalex.org/W4387617694, https://openalex.org/W4200556213, https://openalex.org/W4367304435, https://openalex.org/W2906484232 |
| referenced_works_count | 42 |
| abstract_inverted_index.2 | 127 |
| abstract_inverted_index.3 | 114 |
| abstract_inverted_index.6 | 123 |
| abstract_inverted_index.9 | 119 |
| abstract_inverted_index.a | 84, 98, 161, 214 |
| abstract_inverted_index.F1 | 172 |
| abstract_inverted_index.We | 82, 112 |
| abstract_inverted_index.an | 171 |
| abstract_inverted_index.as | 156 |
| abstract_inverted_index.by | 141, 213 |
| abstract_inverted_index.in | 4, 18, 57, 144, 178, 232, 237, 244 |
| abstract_inverted_index.of | 25, 73, 105, 133, 166, 174, 188, 209, 216, 227, 242 |
| abstract_inverted_index.on | 50 |
| abstract_inverted_index.to | 28, 37, 39, 64, 87, 146 |
| abstract_inverted_index.± | 168, 176 |
| abstract_inverted_index.LMs | 219 |
| abstract_inverted_index.PPM | 16 |
| abstract_inverted_index.The | 2, 131, 207 |
| abstract_inverted_index.and | 12, 52, 69, 76, 80, 126, 170, 186, 196, 225, 253 |
| abstract_inverted_index.are | 250 |
| abstract_inverted_index.but | 234 |
| abstract_inverted_index.for | 14, 102, 191, 201 |
| abstract_inverted_index.has | 21, 46 |
| abstract_inverted_index.not | 220 |
| abstract_inverted_index.our | 134, 152 |
| abstract_inverted_index.the | 23, 30, 62, 71, 137, 157, 184, 197, 223, 239 |
| abstract_inverted_index.use | 208 |
| abstract_inverted_index.via | 97, 109 |
| abstract_inverted_index.PPMs | 233, 243 |
| abstract_inverted_index.This | 181 |
| abstract_inverted_index.aids | 236 |
| abstract_inverted_index.also | 235 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.less | 48 |
| abstract_inverted_index.more | 66 |
| abstract_inverted_index.only | 221 |
| abstract_inverted_index.with | 9, 93 |
| abstract_inverted_index.(LMs) | 92 |
| abstract_inverted_index.2.74% | 169 |
| abstract_inverted_index.3.70% | 177 |
| abstract_inverted_index.74.37 | 175 |
| abstract_inverted_index.77.67 | 167 |
| abstract_inverted_index.care. | 78 |
| abstract_inverted_index.focus | 49 |
| abstract_inverted_index.holds | 61 |
| abstract_inverted_index.model | 154 |
| abstract_inverted_index.needs | 11 |
| abstract_inverted_index.score | 165, 173 |
| abstract_inverted_index.study | 182 |
| abstract_inverted_index.surge | 3 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.there | 45 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.yield | 65 |
| abstract_inverted_index.(PPMs) | 8 |
| abstract_inverted_index.Neural | 100 |
| abstract_inverted_index.fusion | 85, 124, 153, 199, 215 |
| abstract_inverted_index.models | 91, 143 |
| abstract_inverted_index.needs. | 43 |
| abstract_inverted_index.portal | 6 |
| abstract_inverted_index.rising | 240 |
| abstract_inverted_index.timely | 35 |
| abstract_inverted_index.triage | 17 |
| abstract_inverted_index.volume | 241 |
| abstract_inverted_index.Methods | 81 |
| abstract_inverted_index.Network | 101 |
| abstract_inverted_index.Results | 130 |
| abstract_inverted_index.concern | 194, 204, 230 |
| abstract_inverted_index.emerges | 155 |
| abstract_inverted_index.machine | 116, 148 |
| abstract_inverted_index.models, | 118, 122, 125 |
| abstract_inverted_index.models. | 129, 150 |
| abstract_inverted_index.notably | 162 |
| abstract_inverted_index.nuanced | 67 |
| abstract_inverted_index.patient | 5, 54, 106, 192, 228, 248 |
| abstract_inverted_index.precise | 103 |
| abstract_inverted_index.primary | 55, 107, 193, 203, 229 |
| abstract_inverted_index.propose | 83 |
| abstract_inverted_index.quality | 72 |
| abstract_inverted_index.satisfy | 40 |
| abstract_inverted_index.spurred | 22 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.PPMs—a | 58 |
| abstract_inverted_index.accuracy | 164, 224 |
| abstract_inverted_index.achieved | 140 |
| abstract_inverted_index.concerns | 56, 108 |
| abstract_inverted_index.critical | 247 |
| abstract_inverted_index.delivery | 75 |
| abstract_inverted_index.enhanced | 212 |
| abstract_inverted_index.enhances | 70 |
| abstract_inverted_index.ensemble | 128 |
| abstract_inverted_index.ensuring | 34, 246 |
| abstract_inverted_index.examined | 113 |
| abstract_inverted_index.improved | 163 |
| abstract_inverted_index.improves | 222 |
| abstract_inverted_index.insights | 68 |
| abstract_inverted_index.language | 90, 95, 121 |
| abstract_inverted_index.learning | 117, 149 |
| abstract_inverted_index.leverage | 88 |
| abstract_inverted_index.managing | 238 |
| abstract_inverted_index.messages | 7 |
| abstract_inverted_index.multiple | 217 |
| abstract_inverted_index.outcomes | 132 |
| abstract_inverted_index.patients | 38 |
| abstract_inverted_index.practice | 59 |
| abstract_inverted_index.promptly | 252 |
| abstract_inverted_index.proposed | 198 |
| abstract_inverted_index.settings | 20 |
| abstract_inverted_index.superior | 138 |
| abstract_inverted_index.workflow | 32 |
| abstract_inverted_index.AI-driven | 26 |
| abstract_inverted_index.Materials | 79 |
| abstract_inverted_index.addressed | 251 |
| abstract_inverted_index.detection | 195 |
| abstract_inverted_index.different | 94 |
| abstract_inverted_index.efficient | 15 |
| abstract_inverted_index.enhancing | 202 |
| abstract_inverted_index.framework | 86, 200 |
| abstract_inverted_index.isolating | 51 |
| abstract_inverted_index.potential | 63 |
| abstract_inverted_index.responses | 36 |
| abstract_inverted_index.solution, | 159 |
| abstract_inverted_index.solutions | 27 |
| abstract_inverted_index.workloads | 13 |
| abstract_inverted_index.BERT-based | 120, 142 |
| abstract_inverted_index.Discussion | 180 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.advantages | 96 |
| abstract_inverted_index.comparison | 145 |
| abstract_inverted_index.delivering | 160 |
| abstract_inverted_index.detection. | 205 |
| abstract_inverted_index.efficiency | 226 |
| abstract_inverted_index.healthcare | 19, 31, 42, 74 |
| abstract_inverted_index.highlights | 183 |
| abstract_inverted_index.increasing | 10 |
| abstract_inverted_index.pretrained | 89, 218 |
| abstract_inverted_index.processes, | 33 |
| abstract_inverted_index.streamline | 29 |
| abstract_inverted_index.underscore | 136 |
| abstract_inverted_index.Conclusions | 206 |
| abstract_inverted_index.Convolution | 99 |
| abstract_inverted_index.Remarkably, | 151 |
| abstract_inverted_index.accurately. | 254 |
| abstract_inverted_index.exploration | 24 |
| abstract_inverted_index.feasibility | 185 |
| abstract_inverted_index.healthcare, | 245 |
| abstract_inverted_index.multi-class | 110, 189, 210 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.traditional | 115, 147 |
| abstract_inverted_index.effectiveness | 187 |
| abstract_inverted_index.understanding | 53 |
| abstract_inverted_index.classification | 190, 211 |
| abstract_inverted_index.communications | 249 |
| abstract_inverted_index.identification | 104, 231 |
| abstract_inverted_index.macro-average. | 179 |
| abstract_inverted_index.top-performing | 158 |
| abstract_inverted_index.classification. | 111 |
| abstract_inverted_index.experimentation | 135 |
| abstract_inverted_index.patient-centered | 77 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5010869663 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210146710, https://openalex.org/I919571938 |
| citation_normalized_percentile.value | 0.92101449 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |