Autonomous Diagnostics and Prognostics in Lithium-Ion Battery Systems via Self-Healing Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/ce/zkaf069
Lithium-ion batteries have emerged as critical enablers of electrified transport, renewable energy integration, and distributed power systems. Their deployment in real-world environments marked by variable loads, heterogeneous usage patterns, thermal fluctuations, and long-term degradation poses significant modeling and control challenges. Also increased complexity and dynamism of its electrochemistry pose significant challenges for conventional machine learning models used in battery management systems. These challenges include data non-stationarity, sensor anomalies, and aging-related performance drifts, which degrade prediction accuracy and compromise safety. This paper outlines a roadmap for integrating self-healing machine learning into next-generation battery management systems to enhance safety, longevity, and intelligence. It proposes an interdisciplinary framework combining online learning, meta learning, uncertainty quantification, and adaptive control for robust, continuous model correction. This Review analyses and classifies recent self-healing machine learning methodologies based on architectural and functional principles.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/ce/zkaf069
- https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdf
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4416715243
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416715243Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/ce/zkaf069Digital Object Identifier
- Title
-
Autonomous Diagnostics and Prognostics in Lithium-Ion Battery Systems via Self-Healing Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Kaushik Das, Sandeep Rawat, Rajeev Ranjan Kumar, Priyanka Chauhan, Devender Kumar SainiList of authors in order
- Landing page
-
https://doi.org/10.1093/ce/zkaf069Publisher landing page
- PDF URL
-
https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416715243 |
|---|---|
| doi | https://doi.org/10.1093/ce/zkaf069 |
| ids.doi | https://doi.org/10.1093/ce/zkaf069 |
| ids.openalex | https://openalex.org/W4416715243 |
| fwci | |
| type | article |
| title | Autonomous Diagnostics and Prognostics in Lithium-Ion Battery Systems via Self-Healing Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1093/ce/zkaf069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177959 |
| locations[0].source.issn | 2515-396X, 2515-4230 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2515-396X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Clean Energy |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Clean Energy |
| locations[0].landing_page_url | https://doi.org/10.1093/ce/zkaf069 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5060143640 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6501-7896 |
| authorships[0].author.display_name | Kaushik Das |
| authorships[0].affiliations[0].raw_affiliation_string | CTO, Solina Energy Solution Pvt Ltd , Mumbai, India, 400042 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaushik Das |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CTO, Solina Energy Solution Pvt Ltd , Mumbai, India, 400042 |
| authorships[1].author.id | https://openalex.org/A5113353164 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sandeep Rawat |
| authorships[1].affiliations[0].raw_affiliation_string | Assistant Professor, Tulas Institute , Dehradun, India, 248007 |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sandeep Rawat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Assistant Professor, Tulas Institute , Dehradun, India, 248007 |
| authorships[2].author.id | https://openalex.org/A5080182531 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2670-6189 |
| authorships[2].author.display_name | Rajeev Ranjan Kumar |
| authorships[2].affiliations[0].raw_affiliation_string | Assistant Professor, Dev Bhoomi Uttarakhand University , Dehradun, India, 248007 |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rajeev Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Assistant Professor, Dev Bhoomi Uttarakhand University , Dehradun, India, 248007 |
| authorships[3].author.id | https://openalex.org/A5104076622 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Priyanka Chauhan |
| authorships[3].affiliations[0].raw_affiliation_string | Assistant Professor, Tulas Institute , Dehradun, India, 248007 |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Priyanka Chauhan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Assistant Professor, Tulas Institute , Dehradun, India, 248007 |
| authorships[4].author.id | https://openalex.org/A5044729433 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5720-4384 |
| authorships[4].author.display_name | Devender Kumar Saini |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[4].affiliations[0].raw_affiliation_string | Professor, UPES , Dehradun, India, 248007 |
| authorships[4].institutions[0].id | https://openalex.org/I5847235 |
| authorships[4].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Devender Kumar Saini |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Professor, UPES , Dehradun, India, 248007 |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | Autonomous Diagnostics and Prognostics in Lithium-Ion Battery Systems via Self-Healing Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T21:20:16.232747 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/ce/zkaf069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177959 |
| best_oa_location.source.issn | 2515-396X, 2515-4230 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2515-396X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Clean Energy |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Clean Energy |
| best_oa_location.landing_page_url | https://doi.org/10.1093/ce/zkaf069 |
| primary_location.id | doi:10.1093/ce/zkaf069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177959 |
| primary_location.source.issn | 2515-396X, 2515-4230 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2515-396X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Clean Energy |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/ce/advance-article-pdf/doi/10.1093/ce/zkaf069/65552009/zkaf069.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Clean Energy |
| primary_location.landing_page_url | https://doi.org/10.1093/ce/zkaf069 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 83 |
| abstract_inverted_index.It | 101 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 20, 58 |
| abstract_inverted_index.of | 8, 46 |
| abstract_inverted_index.on | 132 |
| abstract_inverted_index.to | 95 |
| abstract_inverted_index.and | 14, 32, 38, 44, 69, 77, 99, 113, 124, 134 |
| abstract_inverted_index.for | 52, 85, 116 |
| abstract_inverted_index.its | 47 |
| abstract_inverted_index.Also | 41 |
| abstract_inverted_index.This | 80, 121 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.into | 90 |
| abstract_inverted_index.meta | 109 |
| abstract_inverted_index.pose | 49 |
| abstract_inverted_index.used | 57 |
| abstract_inverted_index.Their | 18 |
| abstract_inverted_index.These | 62 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.model | 119 |
| abstract_inverted_index.paper | 81 |
| abstract_inverted_index.poses | 35 |
| abstract_inverted_index.power | 16 |
| abstract_inverted_index.usage | 28 |
| abstract_inverted_index.which | 73 |
| abstract_inverted_index.Review | 122 |
| abstract_inverted_index.energy | 12 |
| abstract_inverted_index.loads, | 26 |
| abstract_inverted_index.marked | 23 |
| abstract_inverted_index.models | 56 |
| abstract_inverted_index.online | 107 |
| abstract_inverted_index.recent | 126 |
| abstract_inverted_index.sensor | 67 |
| abstract_inverted_index.battery | 59, 92 |
| abstract_inverted_index.control | 39, 115 |
| abstract_inverted_index.degrade | 74 |
| abstract_inverted_index.drifts, | 72 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.enhance | 96 |
| abstract_inverted_index.include | 64 |
| abstract_inverted_index.machine | 54, 88, 128 |
| abstract_inverted_index.roadmap | 84 |
| abstract_inverted_index.robust, | 117 |
| abstract_inverted_index.safety, | 97 |
| abstract_inverted_index.safety. | 79 |
| abstract_inverted_index.systems | 94 |
| abstract_inverted_index.thermal | 30 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 76 |
| abstract_inverted_index.adaptive | 114 |
| abstract_inverted_index.analyses | 123 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.dynamism | 45 |
| abstract_inverted_index.enablers | 7 |
| abstract_inverted_index.learning | 55, 89, 129 |
| abstract_inverted_index.modeling | 37 |
| abstract_inverted_index.outlines | 82 |
| abstract_inverted_index.proposes | 102 |
| abstract_inverted_index.systems. | 17, 61 |
| abstract_inverted_index.variable | 25 |
| abstract_inverted_index.batteries | 2 |
| abstract_inverted_index.combining | 106 |
| abstract_inverted_index.framework | 105 |
| abstract_inverted_index.increased | 42 |
| abstract_inverted_index.learning, | 108, 110 |
| abstract_inverted_index.long-term | 33 |
| abstract_inverted_index.patterns, | 29 |
| abstract_inverted_index.renewable | 11 |
| abstract_inverted_index.anomalies, | 68 |
| abstract_inverted_index.challenges | 51, 63 |
| abstract_inverted_index.classifies | 125 |
| abstract_inverted_index.complexity | 43 |
| abstract_inverted_index.compromise | 78 |
| abstract_inverted_index.continuous | 118 |
| abstract_inverted_index.deployment | 19 |
| abstract_inverted_index.functional | 135 |
| abstract_inverted_index.longevity, | 98 |
| abstract_inverted_index.management | 60, 93 |
| abstract_inverted_index.prediction | 75 |
| abstract_inverted_index.real-world | 21 |
| abstract_inverted_index.transport, | 10 |
| abstract_inverted_index.Lithium-ion | 1 |
| abstract_inverted_index.challenges. | 40 |
| abstract_inverted_index.correction. | 120 |
| abstract_inverted_index.degradation | 34 |
| abstract_inverted_index.distributed | 15 |
| abstract_inverted_index.electrified | 9 |
| abstract_inverted_index.integrating | 86 |
| abstract_inverted_index.performance | 71 |
| abstract_inverted_index.principles. | 136 |
| abstract_inverted_index.significant | 36, 50 |
| abstract_inverted_index.uncertainty | 111 |
| abstract_inverted_index.conventional | 53 |
| abstract_inverted_index.environments | 22 |
| abstract_inverted_index.integration, | 13 |
| abstract_inverted_index.self-healing | 87, 127 |
| abstract_inverted_index.aging-related | 70 |
| abstract_inverted_index.architectural | 133 |
| abstract_inverted_index.fluctuations, | 31 |
| abstract_inverted_index.heterogeneous | 27 |
| abstract_inverted_index.intelligence. | 100 |
| abstract_inverted_index.methodologies | 130 |
| abstract_inverted_index.next-generation | 91 |
| abstract_inverted_index.quantification, | 112 |
| abstract_inverted_index.electrochemistry | 48 |
| abstract_inverted_index.interdisciplinary | 104 |
| abstract_inverted_index.non-stationarity, | 66 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |