Autonomous Vehicle Path Planning by Searching With Differentiable Simulation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.11043
Planning allows an agent to safely refine its actions before executing them in the real world. In autonomous driving, this is crucial to avoid collisions and navigate in complex, dense traffic scenarios. One way to plan is to search for the best action sequence. However, this is challenging when all necessary components - policy, next-state predictor, and critic - have to be learned. Here we propose Differentiable Simulation for Search (DSS), a framework that leverages the differentiable simulator Waymax as both a next state predictor and a critic. It relies on the simulator's hardcoded dynamics, making state predictions highly accurate, while utilizing the simulator's differentiability to effectively search across action sequences. Our DSS agent optimizes its actions using gradient descent over imagined future trajectories. We show experimentally that DSS - the combination of planning gradients and stochastic search - significantly improves tracking and path planning accuracy compared to sequence prediction, imitation learning, model-free RL, and other planning methods.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.11043
- https://arxiv.org/pdf/2511.11043
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416714881
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416714881Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.11043Digital Object Identifier
- Title
-
Autonomous Vehicle Path Planning by Searching With Differentiable SimulationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
Asen Nachkov, Jan-Nico Zaech, Danda Pani Paudel, Xi WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.11043Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.11043Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.11043Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416714881 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.11043 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.11043 |
| ids.openalex | https://openalex.org/W4416714881 |
| fwci | |
| type | preprint |
| title | Autonomous Vehicle Path Planning by Searching With Differentiable Simulation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.11043 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.11043 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.11043 |
| locations[1].id | doi:10.48550/arxiv.2511.11043 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.11043 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092803228 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Asen Nachkov |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nachkov, Asen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031102089 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2566-0841 |
| authorships[1].author.display_name | Jan-Nico Zaech |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zaech, Jan-Nico |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050696776 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1739-1867 |
| authorships[2].author.display_name | Danda Pani Paudel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paudel, Danda Pani |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101507173 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4186-4935 |
| authorships[3].author.display_name | Xi Wang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wang, Xi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.11043 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Autonomous Vehicle Path Planning by Searching With Differentiable Simulation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T21:19:24.975087 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.11043 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.11043 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.11043 |
| primary_location.id | pmh:oai:arXiv.org:2511.11043 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.11043 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.11043 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 52, 58, 129, 138 |
| abstract_inverted_index.a | 71, 81, 86 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.It | 88 |
| abstract_inverted_index.We | 124 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.be | 61 |
| abstract_inverted_index.in | 12, 27 |
| abstract_inverted_index.is | 20, 36, 46 |
| abstract_inverted_index.of | 132 |
| abstract_inverted_index.on | 90 |
| abstract_inverted_index.to | 4, 22, 34, 37, 60, 105, 147 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.DSS | 112, 128 |
| abstract_inverted_index.One | 32 |
| abstract_inverted_index.Our | 111 |
| abstract_inverted_index.RL, | 153 |
| abstract_inverted_index.all | 49 |
| abstract_inverted_index.and | 25, 56, 85, 135, 142, 154 |
| abstract_inverted_index.for | 39, 68 |
| abstract_inverted_index.its | 7, 115 |
| abstract_inverted_index.the | 13, 40, 75, 91, 102, 130 |
| abstract_inverted_index.way | 33 |
| abstract_inverted_index.Here | 63 |
| abstract_inverted_index.best | 41 |
| abstract_inverted_index.both | 80 |
| abstract_inverted_index.have | 59 |
| abstract_inverted_index.next | 82 |
| abstract_inverted_index.over | 120 |
| abstract_inverted_index.path | 143 |
| abstract_inverted_index.plan | 35 |
| abstract_inverted_index.real | 14 |
| abstract_inverted_index.show | 125 |
| abstract_inverted_index.that | 73, 127 |
| abstract_inverted_index.them | 11 |
| abstract_inverted_index.this | 19, 45 |
| abstract_inverted_index.when | 48 |
| abstract_inverted_index.agent | 3, 113 |
| abstract_inverted_index.avoid | 23 |
| abstract_inverted_index.dense | 29 |
| abstract_inverted_index.other | 155 |
| abstract_inverted_index.state | 83, 96 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.while | 100 |
| abstract_inverted_index.(DSS), | 70 |
| abstract_inverted_index.Search | 69 |
| abstract_inverted_index.Waymax | 78 |
| abstract_inverted_index.across | 108 |
| abstract_inverted_index.action | 42, 109 |
| abstract_inverted_index.allows | 1 |
| abstract_inverted_index.before | 9 |
| abstract_inverted_index.critic | 57 |
| abstract_inverted_index.future | 122 |
| abstract_inverted_index.highly | 98 |
| abstract_inverted_index.making | 95 |
| abstract_inverted_index.refine | 6 |
| abstract_inverted_index.relies | 89 |
| abstract_inverted_index.safely | 5 |
| abstract_inverted_index.search | 38, 107, 137 |
| abstract_inverted_index.world. | 15 |
| abstract_inverted_index.actions | 8, 116 |
| abstract_inverted_index.critic. | 87 |
| abstract_inverted_index.crucial | 21 |
| abstract_inverted_index.descent | 119 |
| abstract_inverted_index.policy, | 53 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.traffic | 30 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.Planning | 0 |
| abstract_inverted_index.accuracy | 145 |
| abstract_inverted_index.compared | 146 |
| abstract_inverted_index.complex, | 28 |
| abstract_inverted_index.driving, | 18 |
| abstract_inverted_index.gradient | 118 |
| abstract_inverted_index.imagined | 121 |
| abstract_inverted_index.improves | 140 |
| abstract_inverted_index.learned. | 62 |
| abstract_inverted_index.methods. | 157 |
| abstract_inverted_index.navigate | 26 |
| abstract_inverted_index.planning | 133, 144, 156 |
| abstract_inverted_index.sequence | 148 |
| abstract_inverted_index.tracking | 141 |
| abstract_inverted_index.accurate, | 99 |
| abstract_inverted_index.dynamics, | 94 |
| abstract_inverted_index.executing | 10 |
| abstract_inverted_index.framework | 72 |
| abstract_inverted_index.gradients | 134 |
| abstract_inverted_index.hardcoded | 93 |
| abstract_inverted_index.imitation | 150 |
| abstract_inverted_index.learning, | 151 |
| abstract_inverted_index.leverages | 74 |
| abstract_inverted_index.necessary | 50 |
| abstract_inverted_index.optimizes | 114 |
| abstract_inverted_index.predictor | 84 |
| abstract_inverted_index.sequence. | 43 |
| abstract_inverted_index.simulator | 77 |
| abstract_inverted_index.utilizing | 101 |
| abstract_inverted_index.Simulation | 67 |
| abstract_inverted_index.autonomous | 17 |
| abstract_inverted_index.collisions | 24 |
| abstract_inverted_index.components | 51 |
| abstract_inverted_index.model-free | 152 |
| abstract_inverted_index.next-state | 54 |
| abstract_inverted_index.predictor, | 55 |
| abstract_inverted_index.scenarios. | 31 |
| abstract_inverted_index.sequences. | 110 |
| abstract_inverted_index.stochastic | 136 |
| abstract_inverted_index.challenging | 47 |
| abstract_inverted_index.combination | 131 |
| abstract_inverted_index.effectively | 106 |
| abstract_inverted_index.prediction, | 149 |
| abstract_inverted_index.predictions | 97 |
| abstract_inverted_index.simulator's | 92, 103 |
| abstract_inverted_index.significantly | 139 |
| abstract_inverted_index.trajectories. | 123 |
| abstract_inverted_index.Differentiable | 66 |
| abstract_inverted_index.differentiable | 76 |
| abstract_inverted_index.experimentally | 126 |
| abstract_inverted_index.differentiability | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |