Avaliação de Algoritmos de Compressão de Séries Temporais Multivariadas com TinyML em Dispositivos Embarcados Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5753/courb.2025.8828
A transmissão contínua de dados em aplicações automotivas no contexto de Internet das Coisas (IoT) enfrenta desafios relacionados à largura de banda e consumo energético. Neste cenário, o TinyML — a aplicação de modelos de aprendizado de máquina em dispositivos de baixo consumo energético — emerge como uma solução. Este artigo avalia dois algoritmos de compressão de séries temporais, o Multivariate Parallel Tiny Anomaly Compressor (MPTAC) e o Multivariate Sequential Tiny Anomaly Compressor (MSTAC), com foco na sua implementação em dispositivos embarcados com recursos limitados. Deste modo, por meio de um estudo de caso realizado em um cenário real, utilizando o dispositivo OBD-II Edge Freematics One+ conectado a um veículo em movimento, os resultados indicam que o MPTAC oferece melhor fidelidade na reconstrução dos dados, enquanto o MSTAC atinge uma maior taxa de compressão, mas com maior perda de precisão. A escolha do algoritmo ideal depende do equilíbrio desejado entre compressão e qualidade dos dados reconstruídos.
Related Topics
- Type
- article
- Language
- pt
- Landing Page
- https://doi.org/10.5753/courb.2025.8828
- https://sol.sbc.org.br/index.php/courb/article/download/35255/35045
- OA Status
- gold
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411695405
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411695405Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5753/courb.2025.8828Digital Object Identifier
- Title
-
Avaliação de Algoritmos de Compressão de Séries Temporais Multivariadas com TinyML em Dispositivos EmbarcadosWork title
- Type
-
articleOpenAlex work type
- Language
-
ptPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-19Full publication date if available
- Authors
-
Morsinaldo Medeiros, Hagi Costa, Marianne Silva, Ivanovitch SilvaList of authors in order
- Landing page
-
https://doi.org/10.5753/courb.2025.8828Publisher landing page
- PDF URL
-
https://sol.sbc.org.br/index.php/courb/article/download/35255/35045Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://sol.sbc.org.br/index.php/courb/article/download/35255/35045Direct OA link when available
- Concepts
-
Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411695405 |
|---|---|
| doi | https://doi.org/10.5753/courb.2025.8828 |
| ids.doi | https://doi.org/10.5753/courb.2025.8828 |
| ids.openalex | https://openalex.org/W4411695405 |
| fwci | 0.0 |
| type | article |
| title | Avaliação de Algoritmos de Compressão de Séries Temporais Multivariadas com TinyML em Dispositivos Embarcados |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 126 |
| biblio.first_page | 113 |
| topics[0].id | https://openalex.org/T11269 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9966999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Algorithms and Data Compression |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4242035150527954 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4242035150527954 |
| keywords[0].display_name | Computer science |
| language | pt |
| locations[0].id | doi:10.5753/courb.2025.8828 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://sol.sbc.org.br/index.php/courb/article/download/35255/35045 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Anais do IX Workshop de Computação Urbana (CoUrb 2025) |
| locations[0].landing_page_url | https://doi.org/10.5753/courb.2025.8828 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052726701 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7624-5301 |
| authorships[0].author.display_name | Morsinaldo Medeiros |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Morsinaldo Medeiros |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035379003 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0661-0227 |
| authorships[1].author.display_name | Hagi Costa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hagi Costa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078320293 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8277-7571 |
| authorships[2].author.display_name | Marianne Silva |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marianne Silva |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079474193 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0116-6489 |
| authorships[3].author.display_name | Ivanovitch Silva |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ivanovitch Silva |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://sol.sbc.org.br/index.php/courb/article/download/35255/35045 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Avaliação de Algoritmos de Compressão de Séries Temporais Multivariadas com TinyML em Dispositivos Embarcados |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11269 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9966999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Algorithms and Data Compression |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5753/courb.2025.8828 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://sol.sbc.org.br/index.php/courb/article/download/35255/35045 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Anais do IX Workshop de Computação Urbana (CoUrb 2025) |
| best_oa_location.landing_page_url | https://doi.org/10.5753/courb.2025.8828 |
| primary_location.id | doi:10.5753/courb.2025.8828 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://sol.sbc.org.br/index.php/courb/article/download/35255/35045 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Anais do IX Workshop de Computação Urbana (CoUrb 2025) |
| primary_location.landing_page_url | https://doi.org/10.5753/courb.2025.8828 |
| publication_date | 2025-05-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4287845663, https://openalex.org/W2540438180, https://openalex.org/W3007361079, https://openalex.org/W4405429669, https://openalex.org/W3034136960, https://openalex.org/W4404376757, https://openalex.org/W4312324152, https://openalex.org/W4390427043, https://openalex.org/W4386571432, https://openalex.org/W4405975584, https://openalex.org/W4400034187, https://openalex.org/W4285174019, https://openalex.org/W3177140588, https://openalex.org/W3041656781, https://openalex.org/W4396514616, https://openalex.org/W4226306543 |
| referenced_works_count | 16 |
| abstract_inverted_index.A | 0, 140 |
| abstract_inverted_index.a | 30, 107 |
| abstract_inverted_index.e | 22, 66, 151 |
| abstract_inverted_index.o | 27, 59, 67, 100, 116, 126 |
| abstract_inverted_index.de | 3, 10, 20, 32, 34, 36, 40, 54, 56, 89, 92, 132, 138 |
| abstract_inverted_index.do | 142, 146 |
| abstract_inverted_index.em | 5, 38, 79, 95, 110 |
| abstract_inverted_index.na | 76, 121 |
| abstract_inverted_index.no | 8 |
| abstract_inverted_index.os | 112 |
| abstract_inverted_index.um | 90, 96, 108 |
| abstract_inverted_index.à | 18 |
| abstract_inverted_index.com | 74, 82, 135 |
| abstract_inverted_index.das | 12 |
| abstract_inverted_index.dos | 123, 153 |
| abstract_inverted_index.mas | 134 |
| abstract_inverted_index.por | 87 |
| abstract_inverted_index.que | 115 |
| abstract_inverted_index.sua | 77 |
| abstract_inverted_index.uma | 47, 129 |
| abstract_inverted_index.— | 29, 44 |
| abstract_inverted_index.Edge | 103 |
| abstract_inverted_index.Este | 49 |
| abstract_inverted_index.One+ | 105 |
| abstract_inverted_index.Tiny | 62, 70 |
| abstract_inverted_index.caso | 93 |
| abstract_inverted_index.como | 46 |
| abstract_inverted_index.dois | 52 |
| abstract_inverted_index.foco | 75 |
| abstract_inverted_index.meio | 88 |
| abstract_inverted_index.taxa | 131 |
| abstract_inverted_index.(IoT) | 14 |
| abstract_inverted_index.Deste | 85 |
| abstract_inverted_index.MPTAC | 117 |
| abstract_inverted_index.MSTAC | 127 |
| abstract_inverted_index.Neste | 25 |
| abstract_inverted_index.baixo | 41 |
| abstract_inverted_index.banda | 21 |
| abstract_inverted_index.dados | 4, 154 |
| abstract_inverted_index.entre | 149 |
| abstract_inverted_index.ideal | 144 |
| abstract_inverted_index.maior | 130, 136 |
| abstract_inverted_index.modo, | 86 |
| abstract_inverted_index.perda | 137 |
| abstract_inverted_index.real, | 98 |
| abstract_inverted_index.Coisas | 13 |
| abstract_inverted_index.OBD-II | 102 |
| abstract_inverted_index.TinyML | 28 |
| abstract_inverted_index.artigo | 50 |
| abstract_inverted_index.atinge | 128 |
| abstract_inverted_index.avalia | 51 |
| abstract_inverted_index.dados, | 124 |
| abstract_inverted_index.emerge | 45 |
| abstract_inverted_index.estudo | 91 |
| abstract_inverted_index.melhor | 119 |
| abstract_inverted_index.(MPTAC) | 65 |
| abstract_inverted_index.Anomaly | 63, 71 |
| abstract_inverted_index.consumo | 23, 42 |
| abstract_inverted_index.depende | 145 |
| abstract_inverted_index.escolha | 141 |
| abstract_inverted_index.indicam | 114 |
| abstract_inverted_index.largura | 19 |
| abstract_inverted_index.modelos | 33 |
| abstract_inverted_index.oferece | 118 |
| abstract_inverted_index.séries | 57 |
| abstract_inverted_index.(MSTAC), | 73 |
| abstract_inverted_index.Internet | 11 |
| abstract_inverted_index.Parallel | 61 |
| abstract_inverted_index.cenário | 97 |
| abstract_inverted_index.contexto | 9 |
| abstract_inverted_index.desafios | 16 |
| abstract_inverted_index.desejado | 148 |
| abstract_inverted_index.enfrenta | 15 |
| abstract_inverted_index.enquanto | 125 |
| abstract_inverted_index.máquina | 37 |
| abstract_inverted_index.recursos | 83 |
| abstract_inverted_index.veículo | 109 |
| abstract_inverted_index.algoritmo | 143 |
| abstract_inverted_index.cenário, | 26 |
| abstract_inverted_index.conectado | 106 |
| abstract_inverted_index.contínua | 2 |
| abstract_inverted_index.qualidade | 152 |
| abstract_inverted_index.realizado | 94 |
| abstract_inverted_index.Compressor | 64, 72 |
| abstract_inverted_index.Freematics | 104 |
| abstract_inverted_index.Sequential | 69 |
| abstract_inverted_index.algoritmos | 53 |
| abstract_inverted_index.embarcados | 81 |
| abstract_inverted_index.fidelidade | 120 |
| abstract_inverted_index.limitados. | 84 |
| abstract_inverted_index.movimento, | 111 |
| abstract_inverted_index.precisão. | 139 |
| abstract_inverted_index.resultados | 113 |
| abstract_inverted_index.solução. | 48 |
| abstract_inverted_index.temporais, | 58 |
| abstract_inverted_index.utilizando | 99 |
| abstract_inverted_index.aplicação | 31 |
| abstract_inverted_index.aprendizado | 35 |
| abstract_inverted_index.automotivas | 7 |
| abstract_inverted_index.compressão | 55, 150 |
| abstract_inverted_index.dispositivo | 101 |
| abstract_inverted_index.energético | 43 |
| abstract_inverted_index.equilíbrio | 147 |
| abstract_inverted_index.Multivariate | 60, 68 |
| abstract_inverted_index.aplicações | 6 |
| abstract_inverted_index.compressão, | 133 |
| abstract_inverted_index.dispositivos | 39, 80 |
| abstract_inverted_index.energético. | 24 |
| abstract_inverted_index.relacionados | 17 |
| abstract_inverted_index.transmissão | 1 |
| abstract_inverted_index.reconstrução | 122 |
| abstract_inverted_index.implementação | 78 |
| abstract_inverted_index.reconstruídos. | 155 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.11718516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |