AWSPNet: Attention-based Dual-Tree Wavelet Scattering Prototypical Network for MIMO Radar Target Recognition and Jamming Suppression Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.18422
The increasing of digital radio frequency memory based electronic countermeasures poses a significant threat to the survivability and effectiveness of radar systems. These jammers can generate a multitude of deceptive false targets, overwhelming the radar's processing capabilities and masking targets. Consequently, the ability to robustly discriminate between true targets and complex jamming signals, especially in low signal-to-noise ratio (SNR) environments, is of importance. This paper introduces the attention-based dual-tree wavelet scattering prototypical network (AWSPNet), a deep learning framework designed for simultaneous radar target recognition and jamming suppression. The core of AWSPNet is the encoder that leverages the dual-tree complex wavelet transform to extract features that are inherently robust to noise and signal translations. These features are further refined by an attention mechanism and a pre-trained backbone network. To address the challenge of limited labeled data and enhance generalization, we employ a supervised contrastive learning strategy during the training phase. The classification is performed by a prototypical network, which is particularly effective in few-shot learning scenarios, enabling rapid adaptation to new signal types. We demonstrate the efficacy of our approach through extensive experiments. The results show that AWSPNet achieves 90.45\% accuracy at -6 dB SNR. Furthermore, we provide a physical interpretation of the network's inner workings through t-SNE visualizations, which analyze the feature separability at different stages of the model. Finally, by integrating AWSPNet with a time-domain sliding window approach, we present a complete algorithm capable of not only identifying but also effectively suppressing various types of jamming, thereby validating its potential for practical application in complex electromagnetic environments.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.18422
- https://arxiv.org/pdf/2510.18422
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416056024
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416056024Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.18422Digital Object Identifier
- Title
-
AWSPNet: Attention-based Dual-Tree Wavelet Scattering Prototypical Network for MIMO Radar Target Recognition and Jamming SuppressionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Yizhen Jia, Siyao Xiao, Wenkai Jia, Hui Chen, Wen-Qin WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.18422Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.18422Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.18422Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416056024 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.18422 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.18422 |
| ids.openalex | https://openalex.org/W4416056024 |
| fwci | |
| type | preprint |
| title | AWSPNet: Attention-based Dual-Tree Wavelet Scattering Prototypical Network for MIMO Radar Target Recognition and Jamming Suppression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.18422 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.18422 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.18422 |
| locations[1].id | doi:10.48550/arxiv.2510.18422 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.18422 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101047981 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yizhen Jia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia, Yizhen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101123905 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7677-4390 |
| authorships[1].author.display_name | Siyao Xiao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiao, Siyao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056367838 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0269-7860 |
| authorships[2].author.display_name | Wenkai Jia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jia, Wenkai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114310103 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1375-4664 |
| authorships[3].author.display_name | Hui Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Hui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5049463786 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4466-9585 |
| authorships[4].author.display_name | Wen-Qin Wang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wang, Wen-Qin |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.18422 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | AWSPNet: Attention-based Dual-Tree Wavelet Scattering Prototypical Network for MIMO Radar Target Recognition and Jamming Suppression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:38:05.168405 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.18422 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.18422 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.18422 |
| primary_location.id | pmh:oai:arXiv.org:2510.18422 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.18422 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.18422 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 26, 74, 123, 140, 154, 197, 224, 231 |
| abstract_inverted_index.-6 | 191 |
| abstract_inverted_index.To | 127 |
| abstract_inverted_index.We | 172 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.at | 190, 213 |
| abstract_inverted_index.by | 118, 153, 220 |
| abstract_inverted_index.dB | 192 |
| abstract_inverted_index.in | 54, 161, 254 |
| abstract_inverted_index.is | 60, 91, 151, 158 |
| abstract_inverted_index.of | 2, 19, 28, 61, 89, 131, 176, 200, 216, 235, 245 |
| abstract_inverted_index.to | 14, 43, 101, 108, 168 |
| abstract_inverted_index.we | 138, 195, 229 |
| abstract_inverted_index.The | 0, 87, 149, 182 |
| abstract_inverted_index.and | 17, 37, 49, 84, 110, 122, 135 |
| abstract_inverted_index.are | 105, 115 |
| abstract_inverted_index.but | 239 |
| abstract_inverted_index.can | 24 |
| abstract_inverted_index.for | 79, 251 |
| abstract_inverted_index.its | 249 |
| abstract_inverted_index.low | 55 |
| abstract_inverted_index.new | 169 |
| abstract_inverted_index.not | 236 |
| abstract_inverted_index.our | 177 |
| abstract_inverted_index.the | 15, 33, 41, 66, 92, 96, 129, 146, 174, 201, 210, 217 |
| abstract_inverted_index.SNR. | 193 |
| abstract_inverted_index.This | 63 |
| abstract_inverted_index.also | 240 |
| abstract_inverted_index.core | 88 |
| abstract_inverted_index.data | 134 |
| abstract_inverted_index.deep | 75 |
| abstract_inverted_index.only | 237 |
| abstract_inverted_index.show | 184 |
| abstract_inverted_index.that | 94, 104, 185 |
| abstract_inverted_index.true | 47 |
| abstract_inverted_index.with | 223 |
| abstract_inverted_index.(SNR) | 58 |
| abstract_inverted_index.These | 22, 113 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.false | 30 |
| abstract_inverted_index.inner | 203 |
| abstract_inverted_index.noise | 109 |
| abstract_inverted_index.paper | 64 |
| abstract_inverted_index.poses | 10 |
| abstract_inverted_index.radar | 20, 81 |
| abstract_inverted_index.radio | 4 |
| abstract_inverted_index.rapid | 166 |
| abstract_inverted_index.ratio | 57 |
| abstract_inverted_index.t-SNE | 206 |
| abstract_inverted_index.types | 244 |
| abstract_inverted_index.which | 157, 208 |
| abstract_inverted_index.during | 145 |
| abstract_inverted_index.employ | 139 |
| abstract_inverted_index.memory | 6 |
| abstract_inverted_index.model. | 218 |
| abstract_inverted_index.phase. | 148 |
| abstract_inverted_index.robust | 107 |
| abstract_inverted_index.signal | 111, 170 |
| abstract_inverted_index.stages | 215 |
| abstract_inverted_index.target | 82 |
| abstract_inverted_index.threat | 13 |
| abstract_inverted_index.types. | 171 |
| abstract_inverted_index.window | 227 |
| abstract_inverted_index.90.45\% | 188 |
| abstract_inverted_index.AWSPNet | 90, 186, 222 |
| abstract_inverted_index.ability | 42 |
| abstract_inverted_index.address | 128 |
| abstract_inverted_index.analyze | 209 |
| abstract_inverted_index.between | 46 |
| abstract_inverted_index.capable | 234 |
| abstract_inverted_index.complex | 50, 98, 255 |
| abstract_inverted_index.digital | 3 |
| abstract_inverted_index.encoder | 93 |
| abstract_inverted_index.enhance | 136 |
| abstract_inverted_index.extract | 102 |
| abstract_inverted_index.feature | 211 |
| abstract_inverted_index.further | 116 |
| abstract_inverted_index.jammers | 23 |
| abstract_inverted_index.jamming | 51, 85 |
| abstract_inverted_index.labeled | 133 |
| abstract_inverted_index.limited | 132 |
| abstract_inverted_index.masking | 38 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.present | 230 |
| abstract_inverted_index.provide | 196 |
| abstract_inverted_index.radar's | 34 |
| abstract_inverted_index.refined | 117 |
| abstract_inverted_index.results | 183 |
| abstract_inverted_index.sliding | 226 |
| abstract_inverted_index.targets | 48 |
| abstract_inverted_index.thereby | 247 |
| abstract_inverted_index.through | 179, 205 |
| abstract_inverted_index.various | 243 |
| abstract_inverted_index.wavelet | 69, 99 |
| abstract_inverted_index.Finally, | 219 |
| abstract_inverted_index.accuracy | 189 |
| abstract_inverted_index.achieves | 187 |
| abstract_inverted_index.approach | 178 |
| abstract_inverted_index.backbone | 125 |
| abstract_inverted_index.complete | 232 |
| abstract_inverted_index.designed | 78 |
| abstract_inverted_index.efficacy | 175 |
| abstract_inverted_index.enabling | 165 |
| abstract_inverted_index.features | 103, 114 |
| abstract_inverted_index.few-shot | 162 |
| abstract_inverted_index.generate | 25 |
| abstract_inverted_index.jamming, | 246 |
| abstract_inverted_index.learning | 76, 143, 163 |
| abstract_inverted_index.network, | 156 |
| abstract_inverted_index.network. | 126 |
| abstract_inverted_index.physical | 198 |
| abstract_inverted_index.robustly | 44 |
| abstract_inverted_index.signals, | 52 |
| abstract_inverted_index.strategy | 144 |
| abstract_inverted_index.systems. | 21 |
| abstract_inverted_index.targets, | 31 |
| abstract_inverted_index.targets. | 39 |
| abstract_inverted_index.training | 147 |
| abstract_inverted_index.workings | 204 |
| abstract_inverted_index.algorithm | 233 |
| abstract_inverted_index.approach, | 228 |
| abstract_inverted_index.attention | 120 |
| abstract_inverted_index.challenge | 130 |
| abstract_inverted_index.deceptive | 29 |
| abstract_inverted_index.different | 214 |
| abstract_inverted_index.dual-tree | 68, 97 |
| abstract_inverted_index.effective | 160 |
| abstract_inverted_index.extensive | 180 |
| abstract_inverted_index.framework | 77 |
| abstract_inverted_index.frequency | 5 |
| abstract_inverted_index.leverages | 95 |
| abstract_inverted_index.mechanism | 121 |
| abstract_inverted_index.multitude | 27 |
| abstract_inverted_index.network's | 202 |
| abstract_inverted_index.performed | 152 |
| abstract_inverted_index.potential | 250 |
| abstract_inverted_index.practical | 252 |
| abstract_inverted_index.transform | 100 |
| abstract_inverted_index.(AWSPNet), | 73 |
| abstract_inverted_index.adaptation | 167 |
| abstract_inverted_index.electronic | 8 |
| abstract_inverted_index.especially | 53 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.inherently | 106 |
| abstract_inverted_index.introduces | 65 |
| abstract_inverted_index.processing | 35 |
| abstract_inverted_index.scattering | 70 |
| abstract_inverted_index.scenarios, | 164 |
| abstract_inverted_index.supervised | 141 |
| abstract_inverted_index.validating | 248 |
| abstract_inverted_index.application | 253 |
| abstract_inverted_index.contrastive | 142 |
| abstract_inverted_index.demonstrate | 173 |
| abstract_inverted_index.effectively | 241 |
| abstract_inverted_index.identifying | 238 |
| abstract_inverted_index.importance. | 62 |
| abstract_inverted_index.integrating | 221 |
| abstract_inverted_index.pre-trained | 124 |
| abstract_inverted_index.recognition | 83 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.suppressing | 242 |
| abstract_inverted_index.time-domain | 225 |
| abstract_inverted_index.Furthermore, | 194 |
| abstract_inverted_index.capabilities | 36 |
| abstract_inverted_index.discriminate | 45 |
| abstract_inverted_index.experiments. | 181 |
| abstract_inverted_index.overwhelming | 32 |
| abstract_inverted_index.particularly | 159 |
| abstract_inverted_index.prototypical | 71, 155 |
| abstract_inverted_index.separability | 212 |
| abstract_inverted_index.simultaneous | 80 |
| abstract_inverted_index.suppression. | 86 |
| abstract_inverted_index.Consequently, | 40 |
| abstract_inverted_index.effectiveness | 18 |
| abstract_inverted_index.environments, | 59 |
| abstract_inverted_index.environments. | 257 |
| abstract_inverted_index.survivability | 16 |
| abstract_inverted_index.translations. | 112 |
| abstract_inverted_index.classification | 150 |
| abstract_inverted_index.interpretation | 199 |
| abstract_inverted_index.attention-based | 67 |
| abstract_inverted_index.countermeasures | 9 |
| abstract_inverted_index.electromagnetic | 256 |
| abstract_inverted_index.generalization, | 137 |
| abstract_inverted_index.signal-to-noise | 56 |
| abstract_inverted_index.visualizations, | 207 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |