Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2020.3024903
Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2020.3024903
- https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdf
- OA Status
- gold
- Cited By
- 85
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3087782035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3087782035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2020.3024903Digital Object Identifier
- Title
-
Background Learning Based on Target Suppression Constraint for Hyperspectral Target DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Weiying Xie, Xin Zhang, Yunsong Li, Keyan Wang, Qian DuList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2020.3024903Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdfDirect OA link when available
- Concepts
-
Hyperspectral imaging, Artificial intelligence, Computer science, Constraint (computer-aided design), Pattern recognition (psychology), Constant false alarm rate, Object detection, False alarm, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
85Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22, 2024: 22, 2023: 19, 2022: 17, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3087782035 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2020.3024903 |
| ids.doi | https://doi.org/10.1109/jstars.2020.3024903 |
| ids.mag | 3087782035 |
| ids.openalex | https://openalex.org/W3087782035 |
| fwci | 8.18109713 |
| type | article |
| title | Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection |
| awards[0].id | https://openalex.org/G841248577 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61501346 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7389467270 |
| awards[1].funder_id | https://openalex.org/F4320321543 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2017M620440 |
| awards[1].funder_display_name | China Postdoctoral Science Foundation |
| awards[2].id | https://openalex.org/G4131587450 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61571345 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G1147426558 |
| awards[3].funder_id | https://openalex.org/F4320335787 |
| awards[3].display_name | |
| awards[3].funder_award_id | JB180104 |
| awards[3].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[4].id | https://openalex.org/G1595715893 |
| awards[4].funder_id | https://openalex.org/F4320327912 |
| awards[4].display_name | |
| awards[4].funder_award_id | B08038 |
| awards[4].funder_display_name | Higher Education Discipline Innovation Project |
| awards[5].id | https://openalex.org/G4507359911 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 61502367 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| awards[6].id | https://openalex.org/G7594473715 |
| awards[6].funder_id | https://openalex.org/F4320321001 |
| awards[6].display_name | |
| awards[6].funder_award_id | 61801359 |
| awards[6].funder_display_name | National Natural Science Foundation of China |
| awards[7].id | https://openalex.org/G1424917938 |
| awards[7].funder_id | https://openalex.org/F4320321001 |
| awards[7].display_name | |
| awards[7].funder_award_id | 61701360 |
| awards[7].funder_display_name | National Natural Science Foundation of China |
| awards[8].id | https://openalex.org/G5657849150 |
| awards[8].funder_id | https://openalex.org/F4320321001 |
| awards[8].display_name | |
| awards[8].funder_award_id | 91538101 |
| awards[8].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 5897 |
| biblio.first_page | 5887 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.97079998254776 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321543 |
| funders[1].ror | https://ror.org/0426zh255 |
| funders[1].display_name | China Postdoctoral Science Foundation |
| funders[2].id | https://openalex.org/F4320327912 |
| funders[2].ror | |
| funders[2].display_name | Higher Education Discipline Innovation Project |
| funders[3].id | https://openalex.org/F4320335787 |
| funders[3].ror | |
| funders[3].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9251072406768799 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6951159238815308 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.682409405708313 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776036281 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5973824262619019 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[3].display_name | Constraint (computer-aided design) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5938156247138977 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C77052588 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5600928664207458 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q644307 |
| concepts[5].display_name | Constant false alarm rate |
| concepts[6].id | https://openalex.org/C2776151529 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5380676984786987 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[6].display_name | Object detection |
| concepts[7].id | https://openalex.org/C2776836416 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4646297097206116 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1364844 |
| concepts[7].display_name | False alarm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.20803606510162354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9251072406768799 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6951159238815308 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.682409405708313 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/constraint |
| keywords[3].score | 0.5973824262619019 |
| keywords[3].display_name | Constraint (computer-aided design) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5938156247138977 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/constant-false-alarm-rate |
| keywords[5].score | 0.5600928664207458 |
| keywords[5].display_name | Constant false alarm rate |
| keywords[6].id | https://openalex.org/keywords/object-detection |
| keywords[6].score | 0.5380676984786987 |
| keywords[6].display_name | Object detection |
| keywords[7].id | https://openalex.org/keywords/false-alarm |
| keywords[7].score | 0.4646297097206116 |
| keywords[7].display_name | False alarm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.20803606510162354 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/jstars.2020.3024903 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2020.3024903 |
| locations[1].id | pmh:oai:doaj.org/article:b88df0dc41484d0d93a57d412ae45b63 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 5887-5897 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/b88df0dc41484d0d93a57d412ae45b63 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5052163069 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8310-024X |
| authorships[0].author.display_name | Weiying Xie |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiying Xie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5056955447 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6455-047X |
| authorships[1].author.display_name | Xin Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5067798266 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0640-4060 |
| authorships[2].author.display_name | Yunsong Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunsong Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5013877857 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6116-9286 |
| authorships[3].author.display_name | Keyan Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Keyan Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5033017179 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8354-7500 |
| authorships[4].author.display_name | Qian Du |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99041443 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
| authorships[4].institutions[0].id | https://openalex.org/I99041443 |
| authorships[4].institutions[0].ror | https://ror.org/0432jq872 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210141039, https://openalex.org/I99041443 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Mississippi State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Qian Du |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W1983393909, https://openalex.org/W2040150569, https://openalex.org/W2010501297, https://openalex.org/W2468095590, https://openalex.org/W2132174924, https://openalex.org/W1911540634, https://openalex.org/W2013909972 |
| cited_by_count | 85 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 22 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 19 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 17 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2020.3024903 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2020.3024903 |
| primary_location.id | doi:10.1109/jstars.2020.3024903 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/8994817/09200776.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2020.3024903 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2973454555, https://openalex.org/W2902587915, https://openalex.org/W2921862546, https://openalex.org/W2921592755, https://openalex.org/W2519678035, https://openalex.org/W2940232517, https://openalex.org/W2979348177, https://openalex.org/W2943839452, https://openalex.org/W2886236919, https://openalex.org/W2922095228, https://openalex.org/W2922177059, https://openalex.org/W2017014096, https://openalex.org/W2914685724, https://openalex.org/W2154236340, https://openalex.org/W2948763898, https://openalex.org/W2783801053, https://openalex.org/W2047096209, https://openalex.org/W1899348529, https://openalex.org/W2117741752, https://openalex.org/W625476304, https://openalex.org/W1973176871, https://openalex.org/W6677508755, https://openalex.org/W2144158572, https://openalex.org/W2107820823, https://openalex.org/W2533102868, https://openalex.org/W2799390666, https://openalex.org/W2948626020, https://openalex.org/W2770315464, https://openalex.org/W2964024144, https://openalex.org/W2963767194, https://openalex.org/W2963017889, https://openalex.org/W6715501732, https://openalex.org/W6780248173, https://openalex.org/W2970645682, https://openalex.org/W2805200669, https://openalex.org/W2969635036, https://openalex.org/W6758101687, https://openalex.org/W3005109735, https://openalex.org/W3003955104, https://openalex.org/W2736090641, https://openalex.org/W2963520896, https://openalex.org/W2933610451, https://openalex.org/W6629013094, https://openalex.org/W2118996198, https://openalex.org/W4293568373, https://openalex.org/W2910068345, https://openalex.org/W2099471712, https://openalex.org/W2963163163, https://openalex.org/W1484672383, https://openalex.org/W2412320034 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 14, 38, 93, 113 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.To | 91 |
| abstract_inverted_index.in | 5, 29 |
| abstract_inverted_index.is | 3, 13, 62, 99, 104, 117 |
| abstract_inverted_index.it | 12, 103 |
| abstract_inverted_index.of | 21, 27, 123 |
| abstract_inverted_index.on | 47, 65, 127, 131 |
| abstract_inverted_index.to | 18, 51, 70, 87, 107, 119 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.and | 8, 23, 82, 147, 152 |
| abstract_inverted_index.are | 85 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.six | 132 |
| abstract_inverted_index.the | 19, 24, 60, 66, 73, 77, 80, 89, 121, 137, 142 |
| abstract_inverted_index.HSIs | 84, 134 |
| abstract_inverted_index.Then | 76 |
| abstract_inverted_index.both | 6 |
| abstract_inverted_index.only | 64 |
| abstract_inverted_index.out. | 101 |
| abstract_inverted_index.pure | 109 |
| abstract_inverted_index.real | 133 |
| abstract_inverted_index.spot | 88 |
| abstract_inverted_index.task | 16 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.Thus, | 112 |
| abstract_inverted_index.alarm | 155 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.data. | 111 |
| abstract_inverted_index.false | 154 |
| abstract_inverted_index.learn | 72 |
| abstract_inverted_index.lower | 153 |
| abstract_inverted_index.model | 61 |
| abstract_inverted_index.novel | 39 |
| abstract_inverted_index.quite | 105 |
| abstract_inverted_index.rate. | 156 |
| abstract_inverted_index.called | 43 |
| abstract_inverted_index.coarse | 97 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.images | 31 |
| abstract_inverted_index.impact | 122 |
| abstract_inverted_index.model, | 42 |
| abstract_inverted_index.obtain | 92 |
| abstract_inverted_index.reduce | 120 |
| abstract_inverted_index.target | 1, 28, 48, 58, 114, 125 |
| abstract_inverted_index.yields | 148 |
| abstract_inverted_index.(HSIs). | 32 |
| abstract_inverted_index.between | 79 |
| abstract_inverted_index.carried | 100 |
| abstract_inverted_index.current | 143 |
| abstract_inverted_index.imposed | 118 |
| abstract_inverted_index.limited | 25 |
| abstract_inverted_index.methods | 146 |
| abstract_inverted_index.propose | 37 |
| abstract_inverted_index.samples | 26, 69, 126 |
| abstract_inverted_index.trained | 63 |
| abstract_inverted_index.However, | 11, 102 |
| abstract_inverted_index.accuracy | 151 |
| abstract_inverted_index.article, | 35 |
| abstract_inverted_index.civilian | 9 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.dataset, | 96 |
| abstract_inverted_index.examined | 86 |
| abstract_inverted_index.learning | 41, 45 |
| abstract_inverted_index.military | 7 |
| abstract_inverted_index.original | 83 |
| abstract_inverted_index.proposed | 138 |
| abstract_inverted_index.retrieve | 108 |
| abstract_inverted_index.samples, | 59 |
| abstract_inverted_index.spectral | 54, 68 |
| abstract_inverted_index.targets. | 90 |
| abstract_inverted_index.training | 95 |
| abstract_inverted_index.vectors. | 55 |
| abstract_inverted_index.detection | 2, 98, 145, 150 |
| abstract_inverted_index.difficult | 106 |
| abstract_inverted_index.framework | 139 |
| abstract_inverted_index.suspected | 124 |
| abstract_inverted_index.accurately | 71 |
| abstract_inverted_index.background | 22, 40, 44, 67, 74, 94, 110, 128 |
| abstract_inverted_index.complexity | 20 |
| abstract_inverted_index.constraint | 50, 116 |
| abstract_inverted_index.Considering | 56 |
| abstract_inverted_index.Experiments | 130 |
| abstract_inverted_index.challenging | 15 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.discrepancy | 78 |
| abstract_inverted_index.outperforms | 141 |
| abstract_inverted_index.suppression | 49, 115 |
| abstract_inverted_index.characterize | 52 |
| abstract_inverted_index.insufficient | 57 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.applications. | 10 |
| abstract_inverted_index.distribution. | 75 |
| abstract_inverted_index.hyperspectral | 30 |
| abstract_inverted_index.reconstructed | 81 |
| abstract_inverted_index.significantly | 140 |
| abstract_inverted_index.reconstruction. | 129 |
| abstract_inverted_index.high-dimensional | 53 |
| abstract_inverted_index.state-of-the-art | 144 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.97484132 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |