BAdd: Bias Mitigation through Bias Addition Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.11439
Computer vision (CV) datasets often exhibit biases that are perpetuated by deep learning models. While recent efforts aim to mitigate these biases and foster fair representations, they fail in complex real-world scenarios. In particular, existing methods excel in controlled experiments involving benchmarks with single-attribute injected biases, but struggle with multi-attribute biases being present in well-established CV datasets. Here, we introduce BAdd, a simple yet effective method that allows for learning fair representations invariant to the attributes introducing bias by incorporating features representing these attributes into the backbone. BAdd is evaluated on seven benchmarks and exhibits competitive performance, surpassing state-of-the-art methods on both single- and multi-attribute benchmarks. Notably, BAdd achieves +27.5% and +5.5% absolute accuracy improvements on the challenging multi-attribute benchmarks, FB-Biased-MNIST and CelebA, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.11439
- https://arxiv.org/pdf/2408.11439
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405426124
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405426124Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.11439Digital Object Identifier
- Title
-
BAdd: Bias Mitigation through Bias AdditionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-21Full publication date if available
- Authors
-
Ioannis Sarridis, Christos Koutlis, Symeon Papadopoulos, Christos DiouList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.11439Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.11439Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.11439Direct OA link when available
- Concepts
-
Biasing, Electrical engineering, Engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405426124 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.11439 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.11439 |
| ids.openalex | https://openalex.org/W4405426124 |
| fwci | |
| type | preprint |
| title | BAdd: Bias Mitigation through Bias Addition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.444599986076355 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C20254490 |
| concepts[0].level | 3 |
| concepts[0].score | 0.3293790817260742 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q719550 |
| concepts[0].display_name | Biasing |
| concepts[1].id | https://openalex.org/C119599485 |
| concepts[1].level | 1 |
| concepts[1].score | 0.10957059264183044 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[1].display_name | Electrical engineering |
| concepts[2].id | https://openalex.org/C127413603 |
| concepts[2].level | 0 |
| concepts[2].score | 0.10397112369537354 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[2].display_name | Engineering |
| concepts[3].id | https://openalex.org/C165801399 |
| concepts[3].level | 2 |
| concepts[3].score | 0.0 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[3].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/biasing |
| keywords[0].score | 0.3293790817260742 |
| keywords[0].display_name | Biasing |
| keywords[1].id | https://openalex.org/keywords/electrical-engineering |
| keywords[1].score | 0.10957059264183044 |
| keywords[1].display_name | Electrical engineering |
| keywords[2].id | https://openalex.org/keywords/engineering |
| keywords[2].score | 0.10397112369537354 |
| keywords[2].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.11439 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.11439 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.11439 |
| locations[1].id | doi:10.48550/arxiv.2408.11439 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.11439 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5005706607 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ioannis Sarridis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sarridis, Ioannis |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024874767 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3682-408X |
| authorships[1].author.display_name | Christos Koutlis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Koutlis, Christos |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013616365 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5441-7341 |
| authorships[2].author.display_name | Symeon Papadopoulos |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Papadopoulos, Symeon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004953619 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2461-1928 |
| authorships[3].author.display_name | Christos Diou |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Diou, Christos |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.11439 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BAdd: Bias Mitigation through Bias Addition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.444599986076355 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2069427488, https://openalex.org/W4281694563, https://openalex.org/W2080696413, https://openalex.org/W1506140395, https://openalex.org/W4232799642, https://openalex.org/W2912082923, https://openalex.org/W2744827311, https://openalex.org/W2558598037, https://openalex.org/W2163182355, https://openalex.org/W2376107070 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.11439 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.11439 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.11439 |
| primary_location.id | pmh:oai:arXiv.org:2408.11439 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.11439 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.11439 |
| publication_date | 2024-08-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61 |
| abstract_inverted_index.CV | 55 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.by | 10, 78 |
| abstract_inverted_index.in | 28, 37, 53 |
| abstract_inverted_index.is | 88 |
| abstract_inverted_index.on | 90, 100, 115 |
| abstract_inverted_index.to | 18, 73 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.aim | 17 |
| abstract_inverted_index.and | 22, 93, 103, 110, 121 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.for | 68 |
| abstract_inverted_index.the | 74, 85, 116 |
| abstract_inverted_index.yet | 63 |
| abstract_inverted_index.(CV) | 2 |
| abstract_inverted_index.BAdd | 87, 107 |
| abstract_inverted_index.bias | 77 |
| abstract_inverted_index.both | 101 |
| abstract_inverted_index.deep | 11 |
| abstract_inverted_index.fail | 27 |
| abstract_inverted_index.fair | 24, 70 |
| abstract_inverted_index.into | 84 |
| abstract_inverted_index.that | 7, 66 |
| abstract_inverted_index.they | 26 |
| abstract_inverted_index.with | 42, 48 |
| abstract_inverted_index.+5.5% | 111 |
| abstract_inverted_index.BAdd, | 60 |
| abstract_inverted_index.Here, | 57 |
| abstract_inverted_index.While | 14 |
| abstract_inverted_index.being | 51 |
| abstract_inverted_index.excel | 36 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.seven | 91 |
| abstract_inverted_index.these | 20, 82 |
| abstract_inverted_index.+27.5% | 109 |
| abstract_inverted_index.allows | 67 |
| abstract_inverted_index.biases | 6, 21, 50 |
| abstract_inverted_index.foster | 23 |
| abstract_inverted_index.method | 65 |
| abstract_inverted_index.recent | 15 |
| abstract_inverted_index.simple | 62 |
| abstract_inverted_index.vision | 1 |
| abstract_inverted_index.CelebA, | 122 |
| abstract_inverted_index.biases, | 45 |
| abstract_inverted_index.complex | 29 |
| abstract_inverted_index.efforts | 16 |
| abstract_inverted_index.exhibit | 5 |
| abstract_inverted_index.methods | 35, 99 |
| abstract_inverted_index.models. | 13 |
| abstract_inverted_index.present | 52 |
| abstract_inverted_index.single- | 102 |
| abstract_inverted_index.Computer | 0 |
| abstract_inverted_index.Notably, | 106 |
| abstract_inverted_index.absolute | 112 |
| abstract_inverted_index.accuracy | 113 |
| abstract_inverted_index.achieves | 108 |
| abstract_inverted_index.datasets | 3 |
| abstract_inverted_index.exhibits | 94 |
| abstract_inverted_index.existing | 34 |
| abstract_inverted_index.features | 80 |
| abstract_inverted_index.injected | 44 |
| abstract_inverted_index.learning | 12, 69 |
| abstract_inverted_index.mitigate | 19 |
| abstract_inverted_index.struggle | 47 |
| abstract_inverted_index.backbone. | 86 |
| abstract_inverted_index.datasets. | 56 |
| abstract_inverted_index.effective | 64 |
| abstract_inverted_index.evaluated | 89 |
| abstract_inverted_index.introduce | 59 |
| abstract_inverted_index.invariant | 72 |
| abstract_inverted_index.involving | 40 |
| abstract_inverted_index.attributes | 75, 83 |
| abstract_inverted_index.benchmarks | 41, 92 |
| abstract_inverted_index.controlled | 38 |
| abstract_inverted_index.real-world | 30 |
| abstract_inverted_index.scenarios. | 31 |
| abstract_inverted_index.surpassing | 97 |
| abstract_inverted_index.benchmarks, | 119 |
| abstract_inverted_index.benchmarks. | 105 |
| abstract_inverted_index.challenging | 117 |
| abstract_inverted_index.competitive | 95 |
| abstract_inverted_index.experiments | 39 |
| abstract_inverted_index.introducing | 76 |
| abstract_inverted_index.particular, | 33 |
| abstract_inverted_index.perpetuated | 9 |
| abstract_inverted_index.improvements | 114 |
| abstract_inverted_index.performance, | 96 |
| abstract_inverted_index.representing | 81 |
| abstract_inverted_index.incorporating | 79 |
| abstract_inverted_index.respectively. | 123 |
| abstract_inverted_index.FB-Biased-MNIST | 120 |
| abstract_inverted_index.multi-attribute | 49, 104, 118 |
| abstract_inverted_index.representations | 71 |
| abstract_inverted_index.representations, | 25 |
| abstract_inverted_index.single-attribute | 43 |
| abstract_inverted_index.state-of-the-art | 98 |
| abstract_inverted_index.well-established | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |