Bag-Based Feature-Class Correlation Analysis for Multi-Instance Learning Application Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.59953/paperasia.v40i1b.57
Multi-instance Learning (MIL) is widely applied in image classification. In MIL, an image is presented as a bag. A bag consists of multi-instance which is known as patches. Irrelevant features of the image presented to the classifier affects the classification performance. Feature selection is one of the essential phases to select relevant. However, limited studies discuss the feature selection phase in MIL. Correlation between feature-class (FC) relationship is one important criterion to analyse features’ relevance. However, it cannot be performed directly in MIL. To address this gap, this study proposed the MultiBag-FCCorr feature selection technique. It consists of three steps: transformation, evaluation and fusion. The bags of feature information are acquired from summarization from different statistical central tendency measures of trimmed mean, mode and median. In feature evaluation step, extended point biserial correlation has been used to measure FC correlation and then the FC score has been analysed. The selected features are validated via two prominent classifiers (Support Vector Machine (SVM) and K-Nearest Neighbour (KNN)) on benchmark MI image datasets: UCSB Breast Cancer, Tiger, Elephant and Fox datasets. The selected features of UCSB Breast Cancer dataset were reduced to 92% number of features from the proposed technique giving the best result of average accuracy with 86.8.% using SVM and 84.5% using KNN. The average accuracy improved 6.3% using SVM and 16.4% using KNN compared without implementing the proposed feature selection. The results proved that the selected feature set improved the performance of MI image classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.59953/paperasia.v40i1b.57
- https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38
- OA Status
- diamond
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392476203
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392476203Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.59953/paperasia.v40i1b.57Digital Object Identifier
- Title
-
Bag-Based Feature-Class Correlation Analysis for Multi-Instance Learning ApplicationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-29Full publication date if available
- Authors
-
Mazniha Berahim, Noor Azah Samsudin, Aida Mustapha, Rohayu Mohd Salleh, Muhammad Jaffri Mohd NasirList of authors in order
- Landing page
-
https://doi.org/10.59953/paperasia.v40i1b.57Publisher landing page
- PDF URL
-
https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38Direct OA link when available
- Concepts
-
Class (philosophy), Feature (linguistics), Correlation, Artificial intelligence, Pattern recognition (psychology), Computer science, Machine learning, Mathematics, Linguistics, Philosophy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392476203 |
|---|---|
| doi | https://doi.org/10.59953/paperasia.v40i1b.57 |
| ids.doi | https://doi.org/10.59953/paperasia.v40i1b.57 |
| ids.openalex | https://openalex.org/W4392476203 |
| fwci | 0.0 |
| type | article |
| title | Bag-Based Feature-Class Correlation Analysis for Multi-Instance Learning Application |
| biblio.issue | 1b |
| biblio.volume | 40 |
| biblio.last_page | 61 |
| biblio.first_page | 51 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.3833000063896179 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.3747999966144562 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.3231000006198883 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777212361 |
| concepts[0].level | 2 |
| concepts[0].score | 0.691575288772583 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[0].display_name | Class (philosophy) |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6067036986351013 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C117220453 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5927499532699585 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[2].display_name | Correlation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5684375762939453 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5303735733032227 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5199005603790283 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35267430543899536 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2872561812400818 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.04994010925292969 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/class |
| keywords[0].score | 0.691575288772583 |
| keywords[0].display_name | Class (philosophy) |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.6067036986351013 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/correlation |
| keywords[2].score | 0.5927499532699585 |
| keywords[2].display_name | Correlation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5684375762939453 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5303735733032227 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5199005603790283 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.35267430543899536 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.2872561812400818 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/linguistics |
| keywords[8].score | 0.04994010925292969 |
| keywords[8].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.59953/paperasia.v40i1b.57 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387292709 |
| locations[0].source.issn | 0218-4540 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0218-4540 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PaperAsia |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PaperASIA |
| locations[0].landing_page_url | https://doi.org/10.59953/paperasia.v40i1b.57 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027077558 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7655-8009 |
| authorships[0].author.display_name | Mazniha Berahim |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Diploma Studies, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I930072361 |
| authorships[0].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mazniha Berahim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Diploma Studies, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5075970426 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8361-6182 |
| authorships[1].author.display_name | Noor Azah Samsudin |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I930072361 |
| authorships[1].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Noor Azah Samsudin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia |
| authorships[2].author.id | https://openalex.org/A5032045434 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9077-4995 |
| authorships[2].author.display_name | Aida Mustapha |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I930072361 |
| authorships[2].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aida Mustapha |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[3].author.id | https://openalex.org/A5083808281 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1158-5679 |
| authorships[3].author.display_name | Rohayu Mohd Salleh |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I930072361 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I930072361 |
| authorships[3].institutions[0].ror | https://ror.org/01c5wha71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I930072361 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Tun Hussein Onn University of Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rohayu Mohd Salleh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1, Jalan Panchor,84600 Muar, Johor, Malaysia |
| authorships[4].author.id | https://openalex.org/A5073974267 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9423-0218 |
| authorships[4].author.display_name | Muhammad Jaffri Mohd Nasir |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I226432 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan, City Campus, 16100, Kota Bharu, Kelantan, Malaysia. |
| authorships[4].institutions[0].id | https://openalex.org/I226432 |
| authorships[4].institutions[0].ror | https://ror.org/0463y2v87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I226432 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | Universiti Malaysia Kelantan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Muhammad Jaffri Mohd Nasir |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Entrepreneurship and Business, Universiti Malaysia Kelantan, City Campus, 16100, Kota Bharu, Kelantan, Malaysia. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bag-Based Feature-Class Correlation Analysis for Multi-Instance Learning Application |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.3833000063896179 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W3147584709, https://openalex.org/W2977677679, https://openalex.org/W1992327129, https://openalex.org/W2381986121, https://openalex.org/W2370918718, https://openalex.org/W4224009465, https://openalex.org/W2364238915, https://openalex.org/W2256933480, https://openalex.org/W4386159726 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.59953/paperasia.v40i1b.57 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387292709 |
| best_oa_location.source.issn | 0218-4540 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0218-4540 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PaperAsia |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PaperASIA |
| best_oa_location.landing_page_url | https://doi.org/10.59953/paperasia.v40i1b.57 |
| primary_location.id | doi:10.59953/paperasia.v40i1b.57 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387292709 |
| primary_location.source.issn | 0218-4540 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0218-4540 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PaperAsia |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.compendiumpaperasia.com/index.php/cpa/article/download/57/38 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PaperASIA |
| primary_location.landing_page_url | https://doi.org/10.59953/paperasia.v40i1b.57 |
| publication_date | 2024-02-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2959154628, https://openalex.org/W3009404729, https://openalex.org/W2791315675, https://openalex.org/W2560886373, https://openalex.org/W4288400169, https://openalex.org/W2064390898, https://openalex.org/W3007800443, https://openalex.org/W3108327761, https://openalex.org/W6635120088, https://openalex.org/W3203240771, https://openalex.org/W2069344467, https://openalex.org/W3026931681, https://openalex.org/W4287901611, https://openalex.org/W2010262905, https://openalex.org/W3112079742, https://openalex.org/W2759286633, https://openalex.org/W2947451694, https://openalex.org/W2036424610, https://openalex.org/W2909459066, https://openalex.org/W3037610354, https://openalex.org/W2571156573, https://openalex.org/W3010770988, https://openalex.org/W2792718277, https://openalex.org/W2965743638, https://openalex.org/W4297630185, https://openalex.org/W2958144260, https://openalex.org/W2887387465, https://openalex.org/W3208344716, https://openalex.org/W3211647829, https://openalex.org/W2966776741, https://openalex.org/W2053784471, https://openalex.org/W3141932430, https://openalex.org/W3082801777, https://openalex.org/W2517928405, https://openalex.org/W2600135312, https://openalex.org/W2964348082, https://openalex.org/W2781712876, https://openalex.org/W3165084406, https://openalex.org/W2295722352, https://openalex.org/W2978798168, https://openalex.org/W2073330031, https://openalex.org/W2154107530, https://openalex.org/W6676748427, https://openalex.org/W3119578324, https://openalex.org/W3034534840, https://openalex.org/W2954750610, https://openalex.org/W3106242022, https://openalex.org/W2555044549, https://openalex.org/W1590386482, https://openalex.org/W2924713973, https://openalex.org/W2110045159, https://openalex.org/W2001747071, https://openalex.org/W2944589016, https://openalex.org/W4327656941, https://openalex.org/W4240623739 |
| referenced_works_count | 55 |
| abstract_inverted_index.A | 18 |
| abstract_inverted_index.a | 16 |
| abstract_inverted_index.FC | 138, 143 |
| abstract_inverted_index.In | 9, 125 |
| abstract_inverted_index.It | 95 |
| abstract_inverted_index.MI | 167, 242 |
| abstract_inverted_index.To | 83 |
| abstract_inverted_index.an | 11 |
| abstract_inverted_index.as | 15, 26 |
| abstract_inverted_index.be | 78 |
| abstract_inverted_index.in | 6, 60, 81 |
| abstract_inverted_index.is | 3, 13, 24, 43, 67 |
| abstract_inverted_index.it | 76 |
| abstract_inverted_index.of | 21, 30, 45, 97, 106, 119, 181, 191, 201, 241 |
| abstract_inverted_index.on | 165 |
| abstract_inverted_index.to | 34, 49, 71, 136, 188 |
| abstract_inverted_index.92% | 189 |
| abstract_inverted_index.Fox | 176 |
| abstract_inverted_index.KNN | 222 |
| abstract_inverted_index.SVM | 207, 218 |
| abstract_inverted_index.The | 104, 148, 178, 212, 230 |
| abstract_inverted_index.and | 102, 123, 140, 161, 175, 208, 219 |
| abstract_inverted_index.are | 109, 151 |
| abstract_inverted_index.bag | 19 |
| abstract_inverted_index.has | 133, 145 |
| abstract_inverted_index.one | 44, 68 |
| abstract_inverted_index.set | 237 |
| abstract_inverted_index.the | 31, 35, 38, 46, 56, 90, 142, 194, 198, 226, 234, 239 |
| abstract_inverted_index.two | 154 |
| abstract_inverted_index.via | 153 |
| abstract_inverted_index.(FC) | 65 |
| abstract_inverted_index.6.3% | 216 |
| abstract_inverted_index.KNN. | 211 |
| abstract_inverted_index.MIL, | 10 |
| abstract_inverted_index.MIL. | 61, 82 |
| abstract_inverted_index.UCSB | 170, 182 |
| abstract_inverted_index.bag. | 17 |
| abstract_inverted_index.bags | 105 |
| abstract_inverted_index.been | 134, 146 |
| abstract_inverted_index.best | 199 |
| abstract_inverted_index.from | 111, 113, 193 |
| abstract_inverted_index.gap, | 86 |
| abstract_inverted_index.mode | 122 |
| abstract_inverted_index.that | 233 |
| abstract_inverted_index.then | 141 |
| abstract_inverted_index.this | 85, 87 |
| abstract_inverted_index.used | 135 |
| abstract_inverted_index.were | 186 |
| abstract_inverted_index.with | 204 |
| abstract_inverted_index.(MIL) | 2 |
| abstract_inverted_index.(SVM) | 160 |
| abstract_inverted_index.16.4% | 220 |
| abstract_inverted_index.84.5% | 209 |
| abstract_inverted_index.image | 7, 12, 32, 168, 243 |
| abstract_inverted_index.known | 25 |
| abstract_inverted_index.mean, | 121 |
| abstract_inverted_index.phase | 59 |
| abstract_inverted_index.point | 130 |
| abstract_inverted_index.score | 144 |
| abstract_inverted_index.step, | 128 |
| abstract_inverted_index.study | 88 |
| abstract_inverted_index.three | 98 |
| abstract_inverted_index.using | 206, 210, 217, 221 |
| abstract_inverted_index.which | 23 |
| abstract_inverted_index.(KNN)) | 164 |
| abstract_inverted_index.86.8.% | 205 |
| abstract_inverted_index.Breast | 171, 183 |
| abstract_inverted_index.Cancer | 184 |
| abstract_inverted_index.Tiger, | 173 |
| abstract_inverted_index.Vector | 158 |
| abstract_inverted_index.cannot | 77 |
| abstract_inverted_index.giving | 197 |
| abstract_inverted_index.number | 190 |
| abstract_inverted_index.phases | 48 |
| abstract_inverted_index.proved | 232 |
| abstract_inverted_index.result | 200 |
| abstract_inverted_index.select | 50 |
| abstract_inverted_index.steps: | 99 |
| abstract_inverted_index.widely | 4 |
| abstract_inverted_index.Cancer, | 172 |
| abstract_inverted_index.Feature | 41 |
| abstract_inverted_index.Machine | 159 |
| abstract_inverted_index.address | 84 |
| abstract_inverted_index.affects | 37 |
| abstract_inverted_index.analyse | 72 |
| abstract_inverted_index.applied | 5 |
| abstract_inverted_index.average | 202, 213 |
| abstract_inverted_index.between | 63 |
| abstract_inverted_index.central | 116 |
| abstract_inverted_index.dataset | 185 |
| abstract_inverted_index.discuss | 55 |
| abstract_inverted_index.feature | 57, 92, 107, 126, 228, 236 |
| abstract_inverted_index.fusion. | 103 |
| abstract_inverted_index.limited | 53 |
| abstract_inverted_index.measure | 137 |
| abstract_inverted_index.median. | 124 |
| abstract_inverted_index.reduced | 187 |
| abstract_inverted_index.results | 231 |
| abstract_inverted_index.studies | 54 |
| abstract_inverted_index.trimmed | 120 |
| abstract_inverted_index.without | 224 |
| abstract_inverted_index.(Support | 157 |
| abstract_inverted_index.Elephant | 174 |
| abstract_inverted_index.However, | 52, 75 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.accuracy | 203, 214 |
| abstract_inverted_index.acquired | 110 |
| abstract_inverted_index.biserial | 131 |
| abstract_inverted_index.compared | 223 |
| abstract_inverted_index.consists | 20, 96 |
| abstract_inverted_index.directly | 80 |
| abstract_inverted_index.extended | 129 |
| abstract_inverted_index.features | 29, 150, 180, 192 |
| abstract_inverted_index.improved | 215, 238 |
| abstract_inverted_index.measures | 118 |
| abstract_inverted_index.patches. | 27 |
| abstract_inverted_index.proposed | 89, 195, 227 |
| abstract_inverted_index.selected | 149, 179, 235 |
| abstract_inverted_index.tendency | 117 |
| abstract_inverted_index.K-Nearest | 162 |
| abstract_inverted_index.Neighbour | 163 |
| abstract_inverted_index.analysed. | 147 |
| abstract_inverted_index.benchmark | 166 |
| abstract_inverted_index.criterion | 70 |
| abstract_inverted_index.datasets. | 177 |
| abstract_inverted_index.datasets: | 169 |
| abstract_inverted_index.different | 114 |
| abstract_inverted_index.essential | 47 |
| abstract_inverted_index.important | 69 |
| abstract_inverted_index.performed | 79 |
| abstract_inverted_index.presented | 14, 33 |
| abstract_inverted_index.prominent | 155 |
| abstract_inverted_index.relevant. | 51 |
| abstract_inverted_index.selection | 42, 58, 93 |
| abstract_inverted_index.technique | 196 |
| abstract_inverted_index.validated | 152 |
| abstract_inverted_index.Irrelevant | 28 |
| abstract_inverted_index.classifier | 36 |
| abstract_inverted_index.evaluation | 101, 127 |
| abstract_inverted_index.relevance. | 74 |
| abstract_inverted_index.selection. | 229 |
| abstract_inverted_index.technique. | 94 |
| abstract_inverted_index.Correlation | 62 |
| abstract_inverted_index.classifiers | 156 |
| abstract_inverted_index.correlation | 132, 139 |
| abstract_inverted_index.features’ | 73 |
| abstract_inverted_index.information | 108 |
| abstract_inverted_index.performance | 240 |
| abstract_inverted_index.statistical | 115 |
| abstract_inverted_index.implementing | 225 |
| abstract_inverted_index.performance. | 40 |
| abstract_inverted_index.relationship | 66 |
| abstract_inverted_index.feature-class | 64 |
| abstract_inverted_index.summarization | 112 |
| abstract_inverted_index.Multi-instance | 0 |
| abstract_inverted_index.classification | 39 |
| abstract_inverted_index.multi-instance | 22 |
| abstract_inverted_index.MultiBag-FCCorr | 91 |
| abstract_inverted_index.classification. | 8, 244 |
| abstract_inverted_index.transformation, | 100 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.02784924 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |