Balanced Q-learning: Combining the influence of optimistic and pessimistic targets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.artint.2023.104021
The optimistic nature of the Q−learning target leads to an overestimation bias, which is an inherent problem associated with standard Q−learning. Such a bias fails to account for the possibility of low returns, particularly in risky scenarios. However, the existence of biases, whether overestimation or underestimation, need not necessarily be undesirable. In this paper, we analytically examine the utility of biased learning, and show that specific types of biases may be preferable, depending on the scenario. Based on this finding, we design a novel reinforcement learning algorithm, Balanced Q-learning, in which the target is modified to be a convex combination of a pessimistic and an optimistic term, whose associated weights are determined online, analytically. Such a balanced target inherently promotes risk-averse behavior, which we examine through the lens of the agent's exploration. We prove the convergence of this algorithm in a tabular setting, and empirically demonstrate its consistently good learning performance in various environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.artint.2023.104021
- OA Status
- hybrid
- Cited By
- 5
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3211287969
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3211287969Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.artint.2023.104021Digital Object Identifier
- Title
-
Balanced Q-learning: Combining the influence of optimistic and pessimistic targetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-28Full publication date if available
- Authors
-
Thommen George Karimpanal, Hung Lê, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha VenkateshList of authors in order
- Landing page
-
https://doi.org/10.1016/j.artint.2023.104021Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.artint.2023.104021Direct OA link when available
- Concepts
-
Pessimism, Computer science, Convergence (economics), Reinforcement learning, Term (time), Artificial intelligence, Q-learning, Econometrics, Machine learning, Mathematics, Economics, Quantum mechanics, Economic growth, Physics, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3211287969 |
|---|---|
| doi | https://doi.org/10.1016/j.artint.2023.104021 |
| ids.doi | https://doi.org/10.1016/j.artint.2023.104021 |
| ids.mag | 3211287969 |
| ids.openalex | https://openalex.org/W3211287969 |
| fwci | 1.61744522 |
| type | article |
| title | Balanced Q-learning: Combining the influence of optimistic and pessimistic targets |
| biblio.issue | |
| biblio.volume | 325 |
| biblio.last_page | 104021 |
| biblio.first_page | 104021 |
| topics[0].id | https://openalex.org/T12101 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Advanced Bandit Algorithms Research |
| topics[1].id | https://openalex.org/T10462 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Reinforcement Learning in Robotics |
| topics[2].id | https://openalex.org/T11182 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Auction Theory and Applications |
| is_xpac | False |
| apc_list.value | 3670 |
| apc_list.currency | USD |
| apc_list.value_usd | 3670 |
| apc_paid.value | 3670 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3670 |
| concepts[0].id | https://openalex.org/C9992130 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8319650888442993 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q484954 |
| concepts[0].display_name | Pessimism |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6103947162628174 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777303404 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5885818004608154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[2].display_name | Convergence (economics) |
| concepts[3].id | https://openalex.org/C97541855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5750625729560852 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[3].display_name | Reinforcement learning |
| concepts[4].id | https://openalex.org/C61797465 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4836317300796509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[4].display_name | Term (time) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4405125081539154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C188116033 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4251956641674042 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2664563 |
| concepts[6].display_name | Q-learning |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3584980368614197 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3341352343559265 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2913987636566162 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16378998756408691 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C50522688 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[12].display_name | Economic growth |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/pessimism |
| keywords[0].score | 0.8319650888442993 |
| keywords[0].display_name | Pessimism |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6103947162628174 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convergence |
| keywords[2].score | 0.5885818004608154 |
| keywords[2].display_name | Convergence (economics) |
| keywords[3].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[3].score | 0.5750625729560852 |
| keywords[3].display_name | Reinforcement learning |
| keywords[4].id | https://openalex.org/keywords/term |
| keywords[4].score | 0.4836317300796509 |
| keywords[4].display_name | Term (time) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4405125081539154 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/q-learning |
| keywords[6].score | 0.4251956641674042 |
| keywords[6].display_name | Q-learning |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.3584980368614197 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3341352343559265 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.2913987636566162 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/economics |
| keywords[10].score | 0.16378998756408691 |
| keywords[10].display_name | Economics |
| language | en |
| locations[0].id | doi:10.1016/j.artint.2023.104021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196139623 |
| locations[0].source.issn | 0004-3702, 1872-7921 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0004-3702 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1016/j.artint.2023.104021 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043916805 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8918-3314 |
| authorships[0].author.display_name | Thommen George Karimpanal |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[0].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I149704539 |
| authorships[0].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Deakin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thommen George Karimpanal |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[1].author.id | https://openalex.org/A5101936199 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3126-184X |
| authorships[1].author.display_name | Hung Lê |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[1].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149704539 |
| authorships[1].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Deakin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hung Le |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[2].author.id | https://openalex.org/A5021781447 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5226-580X |
| authorships[2].author.display_name | Majid Abdolshah |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[2].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I149704539 |
| authorships[2].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Deakin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Majid Abdolshah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[3].author.id | https://openalex.org/A5024215125 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2247-850X |
| authorships[3].author.display_name | Santu Rana |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[3].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I149704539 |
| authorships[3].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Deakin University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Santu Rana |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[4].author.id | https://openalex.org/A5088583724 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8714-0281 |
| authorships[4].author.display_name | Sunil Gupta |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[4].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I149704539 |
| authorships[4].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Deakin University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sunil Gupta |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[5].author.id | https://openalex.org/A5085471517 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6531-8907 |
| authorships[5].author.display_name | Truyen Tran |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[5].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I149704539 |
| authorships[5].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Deakin University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Truyen Tran |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[6].author.id | https://openalex.org/A5045540854 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8675-6631 |
| authorships[6].author.display_name | Svetha Venkatesh |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[6].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I149704539 |
| authorships[6].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | Deakin University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Svetha Venkatesh |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Applied Artificial Intelligence Institute, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.artint.2023.104021 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Balanced Q-learning: Combining the influence of optimistic and pessimistic targets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12101 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Advanced Bandit Algorithms Research |
| related_works | https://openalex.org/W3096874164, https://openalex.org/W2166117066, https://openalex.org/W4376605461, https://openalex.org/W2357975469, https://openalex.org/W2136202932, https://openalex.org/W3087814763, https://openalex.org/W2892507673, https://openalex.org/W2361647908, https://openalex.org/W2937181779, https://openalex.org/W2537866915 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.artint.2023.104021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196139623 |
| best_oa_location.source.issn | 0004-3702, 1872-7921 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0004-3702 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.artint.2023.104021 |
| primary_location.id | doi:10.1016/j.artint.2023.104021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196139623 |
| primary_location.source.issn | 0004-3702, 1872-7921 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0004-3702 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1016/j.artint.2023.104021 |
| publication_date | 2023-09-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6602057636, https://openalex.org/W6677067356, https://openalex.org/W2155968351, https://openalex.org/W6771936881, https://openalex.org/W2145339207, https://openalex.org/W6789305357, https://openalex.org/W2150468603, https://openalex.org/W2031727428, https://openalex.org/W6790917506, https://openalex.org/W6712173889, https://openalex.org/W6741813938, https://openalex.org/W6768726894, https://openalex.org/W6785919499, https://openalex.org/W1548889916, https://openalex.org/W2995509794, https://openalex.org/W2121863487, https://openalex.org/W2115211925, https://openalex.org/W569478347, https://openalex.org/W51508254, https://openalex.org/W4298023569, https://openalex.org/W2978943496, https://openalex.org/W4310895557, https://openalex.org/W3103780890, https://openalex.org/W120804890, https://openalex.org/W2596758708, https://openalex.org/W225768461, https://openalex.org/W3011120880, https://openalex.org/W2119567691, https://openalex.org/W2560674852, https://openalex.org/W2725922920, https://openalex.org/W2606098075, https://openalex.org/W2541711215 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 22, 82, 97, 101, 115, 140 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.We | 132 |
| abstract_inverted_index.an | 9, 14, 104 |
| abstract_inverted_index.be | 49, 70, 96 |
| abstract_inverted_index.in | 34, 89, 139, 151 |
| abstract_inverted_index.is | 13, 93 |
| abstract_inverted_index.of | 3, 30, 40, 59, 67, 100, 128, 136 |
| abstract_inverted_index.on | 73, 77 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 8, 25, 95 |
| abstract_inverted_index.we | 54, 80, 123 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 62, 103, 143 |
| abstract_inverted_index.are | 110 |
| abstract_inverted_index.for | 27 |
| abstract_inverted_index.its | 146 |
| abstract_inverted_index.low | 31 |
| abstract_inverted_index.may | 69 |
| abstract_inverted_index.not | 47 |
| abstract_inverted_index.the | 4, 28, 38, 57, 74, 91, 126, 129, 134 |
| abstract_inverted_index.Such | 21, 114 |
| abstract_inverted_index.bias | 23 |
| abstract_inverted_index.good | 148 |
| abstract_inverted_index.lens | 127 |
| abstract_inverted_index.need | 46 |
| abstract_inverted_index.show | 63 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.this | 52, 78, 137 |
| abstract_inverted_index.with | 18 |
| abstract_inverted_index.Based | 76 |
| abstract_inverted_index.bias, | 11 |
| abstract_inverted_index.fails | 24 |
| abstract_inverted_index.leads | 7 |
| abstract_inverted_index.novel | 83 |
| abstract_inverted_index.prove | 133 |
| abstract_inverted_index.risky | 35 |
| abstract_inverted_index.term, | 106 |
| abstract_inverted_index.types | 66 |
| abstract_inverted_index.which | 12, 90, 122 |
| abstract_inverted_index.whose | 107 |
| abstract_inverted_index.biased | 60 |
| abstract_inverted_index.biases | 68 |
| abstract_inverted_index.convex | 98 |
| abstract_inverted_index.design | 81 |
| abstract_inverted_index.nature | 2 |
| abstract_inverted_index.paper, | 53 |
| abstract_inverted_index.target | 6, 92, 117 |
| abstract_inverted_index.account | 26 |
| abstract_inverted_index.agent's | 130 |
| abstract_inverted_index.biases, | 41 |
| abstract_inverted_index.examine | 56, 124 |
| abstract_inverted_index.online, | 112 |
| abstract_inverted_index.problem | 16 |
| abstract_inverted_index.tabular | 141 |
| abstract_inverted_index.through | 125 |
| abstract_inverted_index.utility | 58 |
| abstract_inverted_index.various | 152 |
| abstract_inverted_index.weights | 109 |
| abstract_inverted_index.whether | 42 |
| abstract_inverted_index.Balanced | 87 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.balanced | 116 |
| abstract_inverted_index.finding, | 79 |
| abstract_inverted_index.inherent | 15 |
| abstract_inverted_index.learning | 85, 149 |
| abstract_inverted_index.modified | 94 |
| abstract_inverted_index.promotes | 119 |
| abstract_inverted_index.returns, | 32 |
| abstract_inverted_index.setting, | 142 |
| abstract_inverted_index.specific | 65 |
| abstract_inverted_index.standard | 19 |
| abstract_inverted_index.algorithm | 138 |
| abstract_inverted_index.behavior, | 121 |
| abstract_inverted_index.depending | 72 |
| abstract_inverted_index.existence | 39 |
| abstract_inverted_index.learning, | 61 |
| abstract_inverted_index.scenario. | 75 |
| abstract_inverted_index.algorithm, | 86 |
| abstract_inverted_index.associated | 17, 108 |
| abstract_inverted_index.determined | 111 |
| abstract_inverted_index.inherently | 118 |
| abstract_inverted_index.optimistic | 1, 105 |
| abstract_inverted_index.scenarios. | 36 |
| abstract_inverted_index.Q-learning, | 88 |
| abstract_inverted_index.combination | 99 |
| abstract_inverted_index.convergence | 135 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.empirically | 144 |
| abstract_inverted_index.necessarily | 48 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.pessimistic | 102 |
| abstract_inverted_index.possibility | 29 |
| abstract_inverted_index.preferable, | 71 |
| abstract_inverted_index.risk-averse | 120 |
| abstract_inverted_index.Q−learning | 5 |
| abstract_inverted_index.analytically | 55 |
| abstract_inverted_index.consistently | 147 |
| abstract_inverted_index.exploration. | 131 |
| abstract_inverted_index.particularly | 33 |
| abstract_inverted_index.undesirable. | 50 |
| abstract_inverted_index.Q−learning. | 20 |
| abstract_inverted_index.analytically. | 113 |
| abstract_inverted_index.environments. | 153 |
| abstract_inverted_index.reinforcement | 84 |
| abstract_inverted_index.overestimation | 10, 43 |
| abstract_inverted_index.underestimation, | 45 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5043916805 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I149704539 |
| citation_normalized_percentile.value | 0.82101983 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |