Balanced Self-Paced Learning for AUC Maximization Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.03650
Learning to improve AUC performance is an important topic in machine learning. However, AUC maximization algorithms may decrease generalization performance due to the noisy data. Self-paced learning is an effective method for handling noisy data. However, existing self-paced learning methods are limited to pointwise learning, while AUC maximization is a pairwise learning problem. To solve this challenging problem, we innovatively propose a balanced self-paced AUC maximization algorithm (BSPAUC). Specifically, we first provide a statistical objective for self-paced AUC. Based on this, we propose our self-paced AUC maximization formulation, where a novel balanced self-paced regularization term is embedded to ensure that the selected positive and negative samples have proper proportions. Specially, the sub-problem with respect to all weight variables may be non-convex in our formulation, while the one is normally convex in existing self-paced problems. To address this, we propose a doubly cyclic block coordinate descent method. More importantly, we prove that the sub-problem with respect to all weight variables converges to a stationary point on the basis of closed-form solutions, and our BSPAUC converges to a stationary point of our fixed optimization objective under a mild assumption. Considering both the deep learning and kernel-based implementations, experimental results on several large-scale datasets demonstrate that our BSPAUC has a better generalization performance than existing state-of-the-art AUC maximization methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.03650
- https://arxiv.org/pdf/2207.03650
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285070146
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285070146Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.03650Digital Object Identifier
- Title
-
Balanced Self-Paced Learning for AUC MaximizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-08Full publication date if available
- Authors
-
Bin Gu, Chenkang Zhang, Huan Xiong, Heng HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.03650Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.03650Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.03650Direct OA link when available
- Concepts
-
Maximization, Computer science, Artificial intelligence, Mathematical optimization, Generalization, Stationary point, Pointwise, Machine learning, Mathematics, Algorithm, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285070146 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.03650 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.03650 |
| ids.openalex | https://openalex.org/W4285070146 |
| fwci | |
| type | preprint |
| title | Balanced Self-Paced Learning for AUC Maximization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9937000274658203 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9889000058174133 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776330181 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7098561525344849 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18358244 |
| concepts[0].display_name | Maximization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.586622953414917 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48871541023254395 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4486246705055237 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C177148314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43881362676620483 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[4].display_name | Generalization |
| concepts[5].id | https://openalex.org/C189237950 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4240001440048218 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2500758 |
| concepts[5].display_name | Stationary point |
| concepts[6].id | https://openalex.org/C2777984123 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4216599762439728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9248237 |
| concepts[6].display_name | Pointwise |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3787049949169159 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.33182287216186523 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32523399591445923 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/maximization |
| keywords[0].score | 0.7098561525344849 |
| keywords[0].display_name | Maximization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.586622953414917 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.48871541023254395 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.4486246705055237 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/generalization |
| keywords[4].score | 0.43881362676620483 |
| keywords[4].display_name | Generalization |
| keywords[5].id | https://openalex.org/keywords/stationary-point |
| keywords[5].score | 0.4240001440048218 |
| keywords[5].display_name | Stationary point |
| keywords[6].id | https://openalex.org/keywords/pointwise |
| keywords[6].score | 0.4216599762439728 |
| keywords[6].display_name | Pointwise |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3787049949169159 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.33182287216186523 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.32523399591445923 |
| keywords[9].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.03650 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.03650 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.03650 |
| locations[1].id | doi:10.48550/arxiv.2207.03650 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.03650 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101862362 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5848-5010 |
| authorships[0].author.display_name | Bin Gu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gu, Bin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059106018 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0918-518X |
| authorships[1].author.display_name | Chenkang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Chenkang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100643588 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5401-7834 |
| authorships[2].author.display_name | Huan Xiong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiong, Huan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060016795 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3483-8333 |
| authorships[3].author.display_name | Heng Huang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Huang, Heng |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.03650 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Balanced Self-Paced Learning for AUC Maximization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9937000274658203 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W143502885, https://openalex.org/W42113618, https://openalex.org/W2103468410, https://openalex.org/W2480115405, https://openalex.org/W3197542402, https://openalex.org/W1856228368, https://openalex.org/W2971527398, https://openalex.org/W82829784, https://openalex.org/W1929207905, https://openalex.org/W2263596235 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.03650 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.03650 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.03650 |
| primary_location.id | pmh:oai:arXiv.org:2207.03650 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.03650 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.03650 |
| publication_date | 2022-07-08 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 61, 72, 89, 139, 161, 175, 184, 206 |
| abstract_inverted_index.To | 53, 134 |
| abstract_inverted_index.an | 6, 28 |
| abstract_inverted_index.be | 119 |
| abstract_inverted_index.in | 9, 121, 130 |
| abstract_inverted_index.is | 5, 27, 48, 95, 127 |
| abstract_inverted_index.of | 167, 178 |
| abstract_inverted_index.on | 79, 164, 197 |
| abstract_inverted_index.to | 1, 21, 42, 97, 114, 155, 160, 174 |
| abstract_inverted_index.we | 58, 69, 81, 137, 148 |
| abstract_inverted_index.AUC | 3, 13, 46, 64, 85, 213 |
| abstract_inverted_index.all | 115, 156 |
| abstract_inverted_index.and | 103, 170, 192 |
| abstract_inverted_index.are | 40 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.for | 31, 75 |
| abstract_inverted_index.has | 205 |
| abstract_inverted_index.may | 16, 118 |
| abstract_inverted_index.one | 126 |
| abstract_inverted_index.our | 83, 122, 171, 179, 203 |
| abstract_inverted_index.the | 22, 100, 110, 125, 151, 165, 189 |
| abstract_inverted_index.AUC. | 77 |
| abstract_inverted_index.More | 146 |
| abstract_inverted_index.both | 188 |
| abstract_inverted_index.deep | 190 |
| abstract_inverted_index.have | 106 |
| abstract_inverted_index.mild | 185 |
| abstract_inverted_index.term | 94 |
| abstract_inverted_index.than | 210 |
| abstract_inverted_index.that | 99, 150, 202 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.with | 112, 153 |
| abstract_inverted_index.Based | 78 |
| abstract_inverted_index.basis | 166 |
| abstract_inverted_index.block | 142 |
| abstract_inverted_index.data. | 24, 34 |
| abstract_inverted_index.first | 70 |
| abstract_inverted_index.fixed | 180 |
| abstract_inverted_index.noisy | 23, 33 |
| abstract_inverted_index.novel | 90 |
| abstract_inverted_index.point | 163, 177 |
| abstract_inverted_index.prove | 149 |
| abstract_inverted_index.solve | 54 |
| abstract_inverted_index.this, | 80, 136 |
| abstract_inverted_index.topic | 8 |
| abstract_inverted_index.under | 183 |
| abstract_inverted_index.where | 88 |
| abstract_inverted_index.while | 45, 124 |
| abstract_inverted_index.BSPAUC | 172, 204 |
| abstract_inverted_index.better | 207 |
| abstract_inverted_index.convex | 129 |
| abstract_inverted_index.cyclic | 141 |
| abstract_inverted_index.doubly | 140 |
| abstract_inverted_index.ensure | 98 |
| abstract_inverted_index.method | 30 |
| abstract_inverted_index.proper | 107 |
| abstract_inverted_index.weight | 116, 157 |
| abstract_inverted_index.address | 135 |
| abstract_inverted_index.descent | 144 |
| abstract_inverted_index.improve | 2 |
| abstract_inverted_index.limited | 41 |
| abstract_inverted_index.machine | 10 |
| abstract_inverted_index.method. | 145 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.propose | 60, 82, 138 |
| abstract_inverted_index.provide | 71 |
| abstract_inverted_index.respect | 113, 154 |
| abstract_inverted_index.results | 196 |
| abstract_inverted_index.samples | 105 |
| abstract_inverted_index.several | 198 |
| abstract_inverted_index.However, | 12, 35 |
| abstract_inverted_index.Learning | 0 |
| abstract_inverted_index.balanced | 62, 91 |
| abstract_inverted_index.datasets | 200 |
| abstract_inverted_index.decrease | 17 |
| abstract_inverted_index.embedded | 96 |
| abstract_inverted_index.existing | 36, 131, 211 |
| abstract_inverted_index.handling | 32 |
| abstract_inverted_index.learning | 26, 38, 51, 191 |
| abstract_inverted_index.methods. | 215 |
| abstract_inverted_index.negative | 104 |
| abstract_inverted_index.normally | 128 |
| abstract_inverted_index.pairwise | 50 |
| abstract_inverted_index.positive | 102 |
| abstract_inverted_index.problem, | 57 |
| abstract_inverted_index.problem. | 52 |
| abstract_inverted_index.selected | 101 |
| abstract_inverted_index.(BSPAUC). | 67 |
| abstract_inverted_index.algorithm | 66 |
| abstract_inverted_index.converges | 159, 173 |
| abstract_inverted_index.effective | 29 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.learning, | 44 |
| abstract_inverted_index.learning. | 11 |
| abstract_inverted_index.objective | 74, 182 |
| abstract_inverted_index.pointwise | 43 |
| abstract_inverted_index.problems. | 133 |
| abstract_inverted_index.variables | 117, 158 |
| abstract_inverted_index.Self-paced | 25 |
| abstract_inverted_index.Specially, | 109 |
| abstract_inverted_index.algorithms | 15 |
| abstract_inverted_index.coordinate | 143 |
| abstract_inverted_index.non-convex | 120 |
| abstract_inverted_index.self-paced | 37, 63, 76, 84, 92, 132 |
| abstract_inverted_index.solutions, | 169 |
| abstract_inverted_index.stationary | 162, 176 |
| abstract_inverted_index.Considering | 187 |
| abstract_inverted_index.assumption. | 186 |
| abstract_inverted_index.challenging | 56 |
| abstract_inverted_index.closed-form | 168 |
| abstract_inverted_index.demonstrate | 201 |
| abstract_inverted_index.large-scale | 199 |
| abstract_inverted_index.performance | 4, 19, 209 |
| abstract_inverted_index.statistical | 73 |
| abstract_inverted_index.sub-problem | 111, 152 |
| abstract_inverted_index.experimental | 195 |
| abstract_inverted_index.formulation, | 87, 123 |
| abstract_inverted_index.importantly, | 147 |
| abstract_inverted_index.innovatively | 59 |
| abstract_inverted_index.kernel-based | 193 |
| abstract_inverted_index.maximization | 14, 47, 65, 86, 214 |
| abstract_inverted_index.optimization | 181 |
| abstract_inverted_index.proportions. | 108 |
| abstract_inverted_index.Specifically, | 68 |
| abstract_inverted_index.generalization | 18, 208 |
| abstract_inverted_index.regularization | 93 |
| abstract_inverted_index.implementations, | 194 |
| abstract_inverted_index.state-of-the-art | 212 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |