Balancing large margin nearest neighbours for imbalanced data Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1049/joe.2019.1178
It is critical to learn and obtain a good distance metric that can precisely measure the distance between samples in imbalanced data. However, traditional metric learning algorithms, e.g. large margin nearest neighbour (LMNN), information‐theoretic metric learning, neighbourhood component analysis, do not take imbalanced distributions of classes into consideration. The traditional methods are apt to be affected by the majority samples, so those important minority samples are often ignored during the learning phase of distance metrics matrix, this may gravely confuse decision‐making systems on classifying samples. In order to resolve this problem, the authors propose a novel metric‐learning method named balancing large margin nearest neighbour (BLMNN) for imbalanced data. BLMNN can improve the objective function according to the distribution of classes, which treats the minority and majority classes equally during the optimisation process. Thus, the contribution of minority class is taken into full consideration, which can greatly improve the accuracy of classification. Substantial experiments were performed on real‐world imbalanced datasets. The experiments results in various evaluation indexes of the proposed method comparing it with other metric‐learning methods show the advantages of the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/joe.2019.1178
- https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178
- OA Status
- gold
- Cited By
- 5
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3046166968
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3046166968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/joe.2019.1178Digital Object Identifier
- Title
-
Balancing large margin nearest neighbours for imbalanced dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-01Full publication date if available
- Authors
-
Xiaotian Zhang, Nan Han, Shaojie Qiao, Yongqing Zhang, Ping Huang, Jing Peng, Kai Zhou, Changan YuanList of authors in order
- Landing page
-
https://doi.org/10.1049/joe.2019.1178Publisher landing page
- PDF URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178Direct OA link when available
- Concepts
-
Metric (unit), Margin (machine learning), Large margin nearest neighbor, Computer science, k-nearest neighbors algorithm, Artificial intelligence, Machine learning, Pattern recognition (psychology), Class (philosophy), Neighbourhood (mathematics), Data mining, Mathematics, Economics, Mathematical analysis, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3046166968 |
|---|---|
| doi | https://doi.org/10.1049/joe.2019.1178 |
| ids.doi | https://doi.org/10.1049/joe.2019.1178 |
| ids.mag | 3046166968 |
| ids.openalex | https://openalex.org/W3046166968 |
| fwci | 0.73429774 |
| type | article |
| title | Balancing large margin nearest neighbours for imbalanced data |
| awards[0].id | https://openalex.org/G4576648995 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61802035 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6050550900 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61562008 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G1218524806 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61772091 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G6934172100 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61962006 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 13 |
| biblio.volume | 2020 |
| biblio.last_page | 321 |
| biblio.first_page | 316 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9914000034332275 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1650 |
| apc_paid.value | 1500 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1650 |
| concepts[0].id | https://openalex.org/C176217482 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7487640380859375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[0].display_name | Metric (unit) |
| concepts[1].id | https://openalex.org/C774472 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7403841018676758 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[1].display_name | Margin (machine learning) |
| concepts[2].id | https://openalex.org/C94475309 |
| concepts[2].level | 3 |
| concepts[2].score | 0.642825186252594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6489154 |
| concepts[2].display_name | Large margin nearest neighbor |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6241226196289062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C113238511 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5717359781265259 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[4].display_name | k-nearest neighbors algorithm |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5425459146499634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49647265672683716 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43739914894104004 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2777212361 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43268364667892456 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[8].display_name | Class (philosophy) |
| concepts[9].id | https://openalex.org/C161677786 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42827892303466797 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2478475 |
| concepts[9].display_name | Neighbourhood (mathematics) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41783323884010315 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3091469407081604 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C21547014 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[14].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/metric |
| keywords[0].score | 0.7487640380859375 |
| keywords[0].display_name | Metric (unit) |
| keywords[1].id | https://openalex.org/keywords/margin |
| keywords[1].score | 0.7403841018676758 |
| keywords[1].display_name | Margin (machine learning) |
| keywords[2].id | https://openalex.org/keywords/large-margin-nearest-neighbor |
| keywords[2].score | 0.642825186252594 |
| keywords[2].display_name | Large margin nearest neighbor |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6241226196289062 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[4].score | 0.5717359781265259 |
| keywords[4].display_name | k-nearest neighbors algorithm |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5425459146499634 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.49647265672683716 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.43739914894104004 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/class |
| keywords[8].score | 0.43268364667892456 |
| keywords[8].display_name | Class (philosophy) |
| keywords[9].id | https://openalex.org/keywords/neighbourhood |
| keywords[9].score | 0.42827892303466797 |
| keywords[9].display_name | Neighbourhood (mathematics) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.41783323884010315 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3091469407081604 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1049/joe.2019.1178 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764687066 |
| locations[0].source.issn | 2051-3305 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2051-3305 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Journal of Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Engineering |
| locations[0].landing_page_url | https://doi.org/10.1049/joe.2019.1178 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5114860163 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0574-4095 |
| authorships[0].author.display_name | Xiaotian Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24201400 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I24201400 |
| authorships[0].institutions[0].ror | https://ror.org/01yxwrh59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24201400 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chengdu University of Information Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaotian Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5106976432 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-3349-6763 |
| authorships[1].author.display_name | Nan Han |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24201400 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Management, Chengdu University of Information Technology, Chengdu, 610103 People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I24201400 |
| authorships[1].institutions[0].ror | https://ror.org/01yxwrh59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24201400 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chengdu University of Information Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nan Han |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Management, Chengdu University of Information Technology, Chengdu, 610103 People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5074090518 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4703-780X |
| authorships[2].author.display_name | Shaojie Qiao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24201400 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I24201400 |
| authorships[2].institutions[0].ror | https://ror.org/01yxwrh59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24201400 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chengdu University of Information Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaojie Qiao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Software Engineering, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[3].author.id | https://openalex.org/A5100741917 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3422-8305 |
| authorships[3].author.display_name | Yongqing Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24201400 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[3].institutions[0].id | https://openalex.org/I24201400 |
| authorships[3].institutions[0].ror | https://ror.org/01yxwrh59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24201400 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chengdu University of Information Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yongqing Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225 People's Republic of China |
| authorships[4].author.id | https://openalex.org/A5100778683 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3320-1672 |
| authorships[4].author.display_name | Ping Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24201400 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Management, Chengdu University of Information Technology, Chengdu, 610103 People's Republic of China |
| authorships[4].institutions[0].id | https://openalex.org/I24201400 |
| authorships[4].institutions[0].ror | https://ror.org/01yxwrh59 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24201400 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chengdu University of Information Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ping Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Management, Chengdu University of Information Technology, Chengdu, 610103 People's Republic of China |
| authorships[5].author.id | https://openalex.org/A5072128915 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5490-6228 |
| authorships[5].author.display_name | Jing Peng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210114441 |
| authorships[5].affiliations[0].raw_affiliation_string | Sichuan Provincial Department of Public Security, Chengdu, 610014 People's Republic of China |
| authorships[5].institutions[0].id | https://openalex.org/I4210114441 |
| authorships[5].institutions[0].ror | https://ror.org/01z3tch16 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210114441 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang Provincial Public Security Department |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jing Peng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Sichuan Provincial Department of Public Security, Chengdu, 610014 People's Republic of China |
| authorships[6].author.id | https://openalex.org/A5074926920 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1169-6325 |
| authorships[6].author.display_name | Kai Zhou |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210114441 |
| authorships[6].affiliations[0].raw_affiliation_string | Sichuan Provincial Department of Public Security, Chengdu, 610014 People's Republic of China |
| authorships[6].institutions[0].id | https://openalex.org/I4210114441 |
| authorships[6].institutions[0].ror | https://ror.org/01z3tch16 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210114441 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhejiang Provincial Public Security Department |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kai Zhou |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Sichuan Provincial Department of Public Security, Chengdu, 610014 People's Republic of China |
| authorships[7].author.id | https://openalex.org/A5007724310 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6912-718X |
| authorships[7].author.display_name | Changan Yuan |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210151929 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computer and Information Engineering, Nanning Normal University, Nanning, 530299 People's Republic of China |
| authorships[7].institutions[0].id | https://openalex.org/I4210151929 |
| authorships[7].institutions[0].ror | https://ror.org/04dx82x73 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210151929 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanning Normal University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chang‐an Yuan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer and Information Engineering, Nanning Normal University, Nanning, 530299 People's Republic of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Balancing large margin nearest neighbours for imbalanced data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2015098463, https://openalex.org/W2604397568, https://openalex.org/W2535288021, https://openalex.org/W4297815939, https://openalex.org/W2964189006, https://openalex.org/W2014633245, https://openalex.org/W2173638297, https://openalex.org/W1537803750, https://openalex.org/W3121483733, https://openalex.org/W2938226623 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/joe.2019.1178 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764687066 |
| best_oa_location.source.issn | 2051-3305 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2051-3305 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Journal of Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Journal of Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1049/joe.2019.1178 |
| primary_location.id | doi:10.1049/joe.2019.1178 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764687066 |
| primary_location.source.issn | 2051-3305 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2051-3305 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Journal of Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/joe.2019.1178 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Engineering |
| primary_location.landing_page_url | https://doi.org/10.1049/joe.2019.1178 |
| publication_date | 2020-07-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2473882306, https://openalex.org/W2756359217, https://openalex.org/W2575657035, https://openalex.org/W2114217318, https://openalex.org/W2106053110, https://openalex.org/W2117154949, https://openalex.org/W2169495281, https://openalex.org/W2144935315, https://openalex.org/W2783165089, https://openalex.org/W1949591461, https://openalex.org/W2810894210, https://openalex.org/W2497173630, https://openalex.org/W2963026686, https://openalex.org/W2612114597, https://openalex.org/W1596717185 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 7, 94 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.It | 0 |
| abstract_inverted_index.be | 54 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.do | 39 |
| abstract_inverted_index.in | 19, 162 |
| abstract_inverted_index.is | 1, 138 |
| abstract_inverted_index.it | 171 |
| abstract_inverted_index.of | 44, 72, 118, 135, 149, 166, 179 |
| abstract_inverted_index.on | 82, 155 |
| abstract_inverted_index.so | 60 |
| abstract_inverted_index.to | 3, 53, 87, 115 |
| abstract_inverted_index.The | 48, 159 |
| abstract_inverted_index.and | 5, 124 |
| abstract_inverted_index.apt | 52 |
| abstract_inverted_index.are | 51, 65 |
| abstract_inverted_index.can | 12, 109, 144 |
| abstract_inverted_index.for | 105 |
| abstract_inverted_index.may | 77 |
| abstract_inverted_index.not | 40 |
| abstract_inverted_index.the | 15, 57, 69, 91, 111, 116, 122, 129, 133, 147, 167, 177, 180 |
| abstract_inverted_index.e.g. | 27 |
| abstract_inverted_index.full | 141 |
| abstract_inverted_index.good | 8 |
| abstract_inverted_index.into | 46, 140 |
| abstract_inverted_index.show | 176 |
| abstract_inverted_index.take | 41 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.this | 76, 89 |
| abstract_inverted_index.were | 153 |
| abstract_inverted_index.with | 172 |
| abstract_inverted_index.BLMNN | 108 |
| abstract_inverted_index.Thus, | 132 |
| abstract_inverted_index.class | 137 |
| abstract_inverted_index.data. | 21, 107 |
| abstract_inverted_index.large | 28, 100 |
| abstract_inverted_index.learn | 4 |
| abstract_inverted_index.named | 98 |
| abstract_inverted_index.novel | 95 |
| abstract_inverted_index.often | 66 |
| abstract_inverted_index.order | 86 |
| abstract_inverted_index.other | 173 |
| abstract_inverted_index.phase | 71 |
| abstract_inverted_index.taken | 139 |
| abstract_inverted_index.those | 61 |
| abstract_inverted_index.which | 120, 143 |
| abstract_inverted_index.during | 68, 128 |
| abstract_inverted_index.margin | 29, 101 |
| abstract_inverted_index.method | 97, 169 |
| abstract_inverted_index.metric | 10, 24, 34 |
| abstract_inverted_index.obtain | 6 |
| abstract_inverted_index.treats | 121 |
| abstract_inverted_index.(BLMNN) | 104 |
| abstract_inverted_index.(LMNN), | 32 |
| abstract_inverted_index.authors | 92 |
| abstract_inverted_index.between | 17 |
| abstract_inverted_index.classes | 45, 126 |
| abstract_inverted_index.confuse | 79 |
| abstract_inverted_index.equally | 127 |
| abstract_inverted_index.gravely | 78 |
| abstract_inverted_index.greatly | 145 |
| abstract_inverted_index.ignored | 67 |
| abstract_inverted_index.improve | 110, 146 |
| abstract_inverted_index.indexes | 165 |
| abstract_inverted_index.matrix, | 75 |
| abstract_inverted_index.measure | 14 |
| abstract_inverted_index.method. | 182 |
| abstract_inverted_index.methods | 50, 175 |
| abstract_inverted_index.metrics | 74 |
| abstract_inverted_index.nearest | 30, 102 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.resolve | 88 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.samples | 18, 64 |
| abstract_inverted_index.systems | 81 |
| abstract_inverted_index.various | 163 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accuracy | 148 |
| abstract_inverted_index.affected | 55 |
| abstract_inverted_index.classes, | 119 |
| abstract_inverted_index.critical | 2 |
| abstract_inverted_index.distance | 9, 16, 73 |
| abstract_inverted_index.function | 113 |
| abstract_inverted_index.learning | 25, 70 |
| abstract_inverted_index.majority | 58, 125 |
| abstract_inverted_index.minority | 63, 123, 136 |
| abstract_inverted_index.problem, | 90 |
| abstract_inverted_index.process. | 131 |
| abstract_inverted_index.proposed | 168, 181 |
| abstract_inverted_index.samples, | 59 |
| abstract_inverted_index.samples. | 84 |
| abstract_inverted_index.according | 114 |
| abstract_inverted_index.analysis, | 38 |
| abstract_inverted_index.balancing | 99 |
| abstract_inverted_index.comparing | 170 |
| abstract_inverted_index.component | 37 |
| abstract_inverted_index.datasets. | 158 |
| abstract_inverted_index.important | 62 |
| abstract_inverted_index.learning, | 35 |
| abstract_inverted_index.neighbour | 31, 103 |
| abstract_inverted_index.objective | 112 |
| abstract_inverted_index.performed | 154 |
| abstract_inverted_index.precisely | 13 |
| abstract_inverted_index.advantages | 178 |
| abstract_inverted_index.evaluation | 164 |
| abstract_inverted_index.imbalanced | 20, 42, 106, 157 |
| abstract_inverted_index.Substantial | 151 |
| abstract_inverted_index.algorithms, | 26 |
| abstract_inverted_index.classifying | 83 |
| abstract_inverted_index.experiments | 152, 160 |
| abstract_inverted_index.traditional | 23, 49 |
| abstract_inverted_index.contribution | 134 |
| abstract_inverted_index.distribution | 117 |
| abstract_inverted_index.optimisation | 130 |
| abstract_inverted_index.real‐world | 156 |
| abstract_inverted_index.distributions | 43 |
| abstract_inverted_index.neighbourhood | 36 |
| abstract_inverted_index.consideration, | 142 |
| abstract_inverted_index.consideration. | 47 |
| abstract_inverted_index.classification. | 150 |
| abstract_inverted_index.decision‐making | 80 |
| abstract_inverted_index.metric‐learning | 96, 174 |
| abstract_inverted_index.information‐theoretic | 33 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5106976432 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I24201400 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.76566851 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |