BANSMDA: a computational model for predicting potential microbe-disease associations based on bilinear attention networks and sparse autoencoders Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fgene.2025.1618472
Introduction Predicting the relationship between diseases and microbes can significantly enhance disease diagnosis and treatment, while providing crucial scientific support for public health, ecological health, and drug development. Methods In this manuscript, we introduce an innovative computational model named BANSMDA, which integrates Bilinear Attention Networks with sparse autoencoder to uncover hidden connections between microbes and diseases. In BANSMDA, we first constructed a heterogeneous microbe-disease network by integrating multiple Gaussian similarity measures for diseases and microbes, along with known microbe-disease associations. And then, we employed a BAN-based autoencoder and a sparse autoencoder module to learn node representations within this newly constructed heterogeneous network. Finally, we evaluated the prediction performance of BANSMDA using a 5-fold cross-validation framework. Conclusion Experiments results showed that BANSMDA achieved superior performance compared to other cutting-edge methods. To further assess its effectiveness, we carried out case studies on two common diseases (including Asthma and Colorectal carcinoma) and two important microbial genera (including Escherichia and Bacteroides ), and in the top 20 predicted microbes, there were 19 and 20 having been confirmed by published literature respectively. Besides, in the top 20 predicted diseases, there were 19 and 19 having been confirmed by published literature separately. Therefore, it is easy to conclude that BANSMDA can achieve satisfactory prediction ability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fgene.2025.1618472
- OA Status
- gold
- Cited By
- 1
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413243583
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413243583Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fgene.2025.1618472Digital Object Identifier
- Title
-
BANSMDA: a computational model for predicting potential microbe-disease associations based on bilinear attention networks and sparse autoencodersWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-08Full publication date if available
- Authors
-
Xianzhi Liu, Mingmin Liang, Yu Ge, Shichang Tang, Ona Wu, Bin Zeng, Lei WangList of authors in order
- Landing page
-
https://doi.org/10.3389/fgene.2025.1618472Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fgene.2025.1618472Direct OA link when available
- Concepts
-
Autoencoder, Computer science, Artificial intelligence, Node (physics), Machine learning, Similarity (geometry), Disease, Bilinear interpolation, Deep learning, Medicine, Structural engineering, Engineering, Computer vision, Image (mathematics), PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413243583 |
|---|---|
| doi | https://doi.org/10.3389/fgene.2025.1618472 |
| ids.doi | https://doi.org/10.3389/fgene.2025.1618472 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40860337 |
| ids.openalex | https://openalex.org/W4413243583 |
| fwci | 2.68294463 |
| type | article |
| title | BANSMDA: a computational model for predicting potential microbe-disease associations based on bilinear attention networks and sparse autoencoders |
| biblio.issue | |
| biblio.volume | 16 |
| biblio.last_page | 1618472 |
| biblio.first_page | 1618472 |
| topics[0].id | https://openalex.org/T10066 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gut microbiota and health |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.949999988079071 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.932200014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8700746297836304 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6396632790565491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.524208664894104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C62611344 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4998600482940674 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[3].display_name | Node (physics) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4730108082294464 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C103278499 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46356117725372314 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[5].display_name | Similarity (geometry) |
| concepts[6].id | https://openalex.org/C2779134260 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44449201226234436 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[6].display_name | Disease |
| concepts[7].id | https://openalex.org/C205203396 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43681982159614563 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q612143 |
| concepts[7].display_name | Bilinear interpolation |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3311138451099396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1537359058856964 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C66938386 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[10].display_name | Structural engineering |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.8700746297836304 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6396632790565491 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.524208664894104 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/node |
| keywords[3].score | 0.4998600482940674 |
| keywords[3].display_name | Node (physics) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4730108082294464 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/similarity |
| keywords[5].score | 0.46356117725372314 |
| keywords[5].display_name | Similarity (geometry) |
| keywords[6].id | https://openalex.org/keywords/disease |
| keywords[6].score | 0.44449201226234436 |
| keywords[6].display_name | Disease |
| keywords[7].id | https://openalex.org/keywords/bilinear-interpolation |
| keywords[7].score | 0.43681982159614563 |
| keywords[7].display_name | Bilinear interpolation |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.3311138451099396 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.1537359058856964 |
| keywords[9].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3389/fgene.2025.1618472 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2597340651 |
| locations[0].source.issn | 1664-8021 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-8021 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Genetics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Genetics |
| locations[0].landing_page_url | https://doi.org/10.3389/fgene.2025.1618472 |
| locations[1].id | pmid:40860337 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in genetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40860337 |
| locations[2].id | pmh:oai:doaj.org/article:92ea17dc7d6e44cba1b50094228db292 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Genetics, Vol 16 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/92ea17dc7d6e44cba1b50094228db292 |
| locations[3].id | pmh:oai:europepmc.org:11180177 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12372620 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101751488 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6646-273X |
| authorships[0].author.display_name | Xianzhi Liu |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[0].affiliations[1].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianzhi Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China, School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[1].author.id | https://openalex.org/A5106715694 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mingmin Liang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210146182 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210146182 |
| authorships[1].institutions[0].ror | https://ror.org/05cmpp263 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210146182 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan Vocational College of Safety Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mingmin Liang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[2].author.id | https://openalex.org/A5072949279 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7153-5035 |
| authorships[2].author.display_name | Yu Ge |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210146182 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210146182 |
| authorships[2].institutions[0].ror | https://ror.org/05cmpp263 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210146182 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan Vocational College of Safety Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ge Yu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[3].author.id | https://openalex.org/A5085323907 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0089-7367 |
| authorships[3].author.display_name | Shichang Tang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119273862, https://openalex.org/I139660479 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Continuing Education, Central South University of Forestry and Technology, Changsha, China |
| authorships[3].institutions[0].id | https://openalex.org/I139660479 |
| authorships[3].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Central South University |
| authorships[3].institutions[1].id | https://openalex.org/I119273862 |
| authorships[3].institutions[1].ror | https://ror.org/02czw2k81 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I119273862 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Central South University of Forestry and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shichang Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Continuing Education, Central South University of Forestry and Technology, Changsha, China |
| authorships[4].author.id | https://openalex.org/A5010029432 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5509-9461 |
| authorships[4].author.display_name | Ona Wu |
| authorships[4].affiliations[0].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[4].affiliations[1].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ouxiang Wu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China, School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[5].author.id | https://openalex.org/A5026037336 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1905-8929 |
| authorships[5].author.display_name | Bin Zeng |
| authorships[5].affiliations[0].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China |
| authorships[5].affiliations[1].raw_affiliation_string | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bin Zeng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China, School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China. |
| authorships[6].author.id | https://openalex.org/A5100710637 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5065-8447 |
| authorships[6].author.display_name | Lei Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I198357462 |
| authorships[6].affiliations[0].raw_affiliation_string | Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China |
| authorships[6].institutions[0].id | https://openalex.org/I198357462 |
| authorships[6].institutions[0].ror | https://ror.org/011d8sm39 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I198357462 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Changsha University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lei Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fgene.2025.1618472 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BANSMDA: a computational model for predicting potential microbe-disease associations based on bilinear attention networks and sparse autoencoders |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10066 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gut microbiota and health |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W2159052453, https://openalex.org/W3131327266, https://openalex.org/W2669956259, https://openalex.org/W4249005693, https://openalex.org/W4392946183, https://openalex.org/W4405887298, https://openalex.org/W2892165056, https://openalex.org/W2098964748 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fgene.2025.1618472 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2597340651 |
| best_oa_location.source.issn | 1664-8021 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-8021 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Genetics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Genetics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fgene.2025.1618472 |
| primary_location.id | doi:10.3389/fgene.2025.1618472 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2597340651 |
| primary_location.source.issn | 1664-8021 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-8021 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Genetics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Genetics |
| primary_location.landing_page_url | https://doi.org/10.3389/fgene.2025.1618472 |
| publication_date | 2025-08-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4392373874, https://openalex.org/W2567465856, https://openalex.org/W4391481044, https://openalex.org/W4388871804, https://openalex.org/W1981500982, https://openalex.org/W2068731812, https://openalex.org/W3047212992, https://openalex.org/W2151186216, https://openalex.org/W2108281900, https://openalex.org/W4360616794, https://openalex.org/W4328047928, https://openalex.org/W2899728356, https://openalex.org/W2579357550, https://openalex.org/W2087928405, https://openalex.org/W2144376155, https://openalex.org/W2807176368, https://openalex.org/W2583889943, https://openalex.org/W2009170813, https://openalex.org/W2949040766, https://openalex.org/W2768234824, https://openalex.org/W2793180020, https://openalex.org/W4406716619, https://openalex.org/W3045879648, https://openalex.org/W4389802252, https://openalex.org/W2901312953, https://openalex.org/W2322763599, https://openalex.org/W1980310800, https://openalex.org/W3132948971, https://openalex.org/W3135750143, https://openalex.org/W2771034046, https://openalex.org/W2310707027, https://openalex.org/W2558041282, https://openalex.org/W6753099851, https://openalex.org/W2903096015, https://openalex.org/W2900569176, https://openalex.org/W3004369136, https://openalex.org/W2131186249, https://openalex.org/W2739664659, https://openalex.org/W2980767508, https://openalex.org/W2153280946, https://openalex.org/W3106165797, https://openalex.org/W4391089859, https://openalex.org/W3093960764, https://openalex.org/W4211188239 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 61, 84, 88, 111 |
| abstract_inverted_index.), | 157 |
| abstract_inverted_index.19 | 167, 186, 188 |
| abstract_inverted_index.20 | 162, 169, 181 |
| abstract_inverted_index.In | 29, 56 |
| abstract_inverted_index.To | 129 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.by | 65, 173, 192 |
| abstract_inverted_index.in | 159, 178 |
| abstract_inverted_index.is | 198 |
| abstract_inverted_index.it | 197 |
| abstract_inverted_index.of | 108 |
| abstract_inverted_index.on | 139 |
| abstract_inverted_index.to | 48, 92, 125, 200 |
| abstract_inverted_index.we | 32, 58, 82, 103, 134 |
| abstract_inverted_index.And | 80 |
| abstract_inverted_index.and | 6, 13, 25, 54, 73, 87, 145, 148, 155, 158, 168, 187 |
| abstract_inverted_index.can | 8, 204 |
| abstract_inverted_index.for | 20, 71 |
| abstract_inverted_index.its | 132 |
| abstract_inverted_index.out | 136 |
| abstract_inverted_index.the | 2, 105, 160, 179 |
| abstract_inverted_index.top | 161, 180 |
| abstract_inverted_index.two | 140, 149 |
| abstract_inverted_index.been | 171, 190 |
| abstract_inverted_index.case | 137 |
| abstract_inverted_index.drug | 26 |
| abstract_inverted_index.easy | 199 |
| abstract_inverted_index.node | 94 |
| abstract_inverted_index.that | 119, 202 |
| abstract_inverted_index.this | 30, 97 |
| abstract_inverted_index.were | 166, 185 |
| abstract_inverted_index.with | 45, 76 |
| abstract_inverted_index.along | 75 |
| abstract_inverted_index.first | 59 |
| abstract_inverted_index.known | 77 |
| abstract_inverted_index.learn | 93 |
| abstract_inverted_index.model | 37 |
| abstract_inverted_index.named | 38 |
| abstract_inverted_index.newly | 98 |
| abstract_inverted_index.other | 126 |
| abstract_inverted_index.then, | 81 |
| abstract_inverted_index.there | 165, 184 |
| abstract_inverted_index.using | 110 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.while | 15 |
| abstract_inverted_index.5-fold | 112 |
| abstract_inverted_index.Asthma | 144 |
| abstract_inverted_index.assess | 131 |
| abstract_inverted_index.common | 141 |
| abstract_inverted_index.genera | 152 |
| abstract_inverted_index.having | 170, 189 |
| abstract_inverted_index.hidden | 50 |
| abstract_inverted_index.module | 91 |
| abstract_inverted_index.public | 21 |
| abstract_inverted_index.showed | 118 |
| abstract_inverted_index.sparse | 46, 89 |
| abstract_inverted_index.within | 96 |
| abstract_inverted_index.BANSMDA | 109, 120, 203 |
| abstract_inverted_index.Methods | 28 |
| abstract_inverted_index.achieve | 205 |
| abstract_inverted_index.between | 4, 52 |
| abstract_inverted_index.carried | 135 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.disease | 11 |
| abstract_inverted_index.enhance | 10 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.health, | 22, 24 |
| abstract_inverted_index.network | 64 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.studies | 138 |
| abstract_inverted_index.support | 19 |
| abstract_inverted_index.uncover | 49 |
| abstract_inverted_index.BANSMDA, | 39, 57 |
| abstract_inverted_index.Besides, | 177 |
| abstract_inverted_index.Bilinear | 42 |
| abstract_inverted_index.Finally, | 102 |
| abstract_inverted_index.Gaussian | 68 |
| abstract_inverted_index.Networks | 44 |
| abstract_inverted_index.ability. | 208 |
| abstract_inverted_index.achieved | 121 |
| abstract_inverted_index.compared | 124 |
| abstract_inverted_index.conclude | 201 |
| abstract_inverted_index.diseases | 5, 72, 142 |
| abstract_inverted_index.employed | 83 |
| abstract_inverted_index.measures | 70 |
| abstract_inverted_index.methods. | 128 |
| abstract_inverted_index.microbes | 7, 53 |
| abstract_inverted_index.multiple | 67 |
| abstract_inverted_index.network. | 101 |
| abstract_inverted_index.superior | 122 |
| abstract_inverted_index.Attention | 43 |
| abstract_inverted_index.BAN-based | 85 |
| abstract_inverted_index.confirmed | 172, 191 |
| abstract_inverted_index.diagnosis | 12 |
| abstract_inverted_index.diseases, | 183 |
| abstract_inverted_index.diseases. | 55 |
| abstract_inverted_index.evaluated | 104 |
| abstract_inverted_index.important | 150 |
| abstract_inverted_index.introduce | 33 |
| abstract_inverted_index.microbes, | 74, 164 |
| abstract_inverted_index.microbial | 151 |
| abstract_inverted_index.predicted | 163, 182 |
| abstract_inverted_index.providing | 16 |
| abstract_inverted_index.published | 174, 193 |
| abstract_inverted_index.(including | 143, 153 |
| abstract_inverted_index.Colorectal | 146 |
| abstract_inverted_index.Conclusion | 115 |
| abstract_inverted_index.Predicting | 1 |
| abstract_inverted_index.Therefore, | 196 |
| abstract_inverted_index.carcinoma) | 147 |
| abstract_inverted_index.ecological | 23 |
| abstract_inverted_index.framework. | 114 |
| abstract_inverted_index.innovative | 35 |
| abstract_inverted_index.integrates | 41 |
| abstract_inverted_index.literature | 175, 194 |
| abstract_inverted_index.prediction | 106, 207 |
| abstract_inverted_index.scientific | 18 |
| abstract_inverted_index.similarity | 69 |
| abstract_inverted_index.treatment, | 14 |
| abstract_inverted_index.Bacteroides | 156 |
| abstract_inverted_index.Escherichia | 154 |
| abstract_inverted_index.Experiments | 116 |
| abstract_inverted_index.autoencoder | 47, 86, 90 |
| abstract_inverted_index.connections | 51 |
| abstract_inverted_index.constructed | 60, 99 |
| abstract_inverted_index.integrating | 66 |
| abstract_inverted_index.manuscript, | 31 |
| abstract_inverted_index.performance | 107, 123 |
| abstract_inverted_index.separately. | 195 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.cutting-edge | 127 |
| abstract_inverted_index.development. | 27 |
| abstract_inverted_index.relationship | 3 |
| abstract_inverted_index.satisfactory | 206 |
| abstract_inverted_index.associations. | 79 |
| abstract_inverted_index.computational | 36 |
| abstract_inverted_index.heterogeneous | 62, 100 |
| abstract_inverted_index.respectively. | 176 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.effectiveness, | 133 |
| abstract_inverted_index.microbe-disease | 63, 78 |
| abstract_inverted_index.representations | 95 |
| abstract_inverted_index.cross-validation | 113 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5010029432, https://openalex.org/A5106715694, https://openalex.org/A5101751488 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I4210146182 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.84589211 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |