Barrier-Free Large-Scale Sparse Tensor Accelerator (BARISTA) For Convolutional Neural Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.08734
Convolutional neural networks (CNNs) are emerging as powerful tools for visual recognition. Recent architecture proposals for sparse CNNs exploit zeros in the feature maps and filters for performance and energy without losing accuracy. Sparse architectures that exploit two-sided sparsity in both feature maps and filters have been studied only at small scales (e.g., 1K multiply-accumulate(MAC) units). However, to realize their advantages in full, the sparse architectures have to be scaled up to levels of the dense architectures (e.g., 32K MACs in the TPU). Such scaling is challenging since achieving reuse through broadcasts incurs implicit barrier cost raises the inter-related issues of load imbalance, buffering, and on-chip bandwidth demand. SparTen, a previous scheme, addresses one aspect of load balancing but not other aspects, nor the other issues of buffering and bandwidth. To that end, we propose the barrier-free large-scale sparse tensor accelerator (BARISTA). BARISTA (1) is the first architecture for scaling up sparse CNN accelerators; (2) reduces on-chip bandwidth demand by telescoping request-combining the input map requests and snarfing the filter requests; (3) reduces buffering via basic buffer sharing and avoids the ensuing barriers between consecutive input maps by coloring the output buffers; (4) load balances intra-filter work via dynamic round-robin work assignment; and (5) employs hierarchical buffering which achieves high cache bandwidth via a few, wide, shared buffers and low buffering via narrower, private buffers at the compute. Our simulations show that, on average, barista performs 5.4x, 2.2x, 1.7x, 2.5x better than a dense, a one-sided, a naively-scaled two-sided, and an iso-area two-sided architecture, respectively. Using 45-nm technology, ASIC synthesis of our RTL design for four clusters of 8K MACs at 1 GHz clock speed, reports 213 mm$^2$ area and 170 W power.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2104.08734
- https://arxiv.org/pdf/2104.08734
- OA Status
- green
- References
- 43
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3156219765
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3156219765Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.08734Digital Object Identifier
- Title
-
Barrier-Free Large-Scale Sparse Tensor Accelerator (BARISTA) For Convolutional Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-18Full publication date if available
- Authors
-
Ashish Gondimalla, Sree Charan Gundabolu, T. N. Vijaykumar, Mithuna ThottethodiList of authors in order
- Landing page
-
https://arxiv.org/abs/2104.08734Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2104.08734Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.08734Direct OA link when available
- Concepts
-
Computer science, Exploit, Convolutional neural network, Bandwidth (computing), Parallel computing, Cache, Scaling, Reuse, Computer engineering, Memory bandwidth, Chip, Artificial intelligence, Computer network, Computer security, Mathematics, Ecology, Biology, Geometry, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3156219765 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.08734 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.08734 |
| ids.mag | 3156219765 |
| ids.openalex | https://openalex.org/W3156219765 |
| fwci | |
| type | preprint |
| title | Barrier-Free Large-Scale Sparse Tensor Accelerator (BARISTA) For Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12303 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2605 |
| topics[1].subfield.display_name | Computational Mathematics |
| topics[1].display_name | Tensor decomposition and applications |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8280191421508789 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165696696 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6726312637329102 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[1].display_name | Exploit |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6571764945983887 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C2776257435 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6409326195716858 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[3].display_name | Bandwidth (computing) |
| concepts[4].id | https://openalex.org/C173608175 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5349453687667847 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[4].display_name | Parallel computing |
| concepts[5].id | https://openalex.org/C115537543 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4988386631011963 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q165596 |
| concepts[5].display_name | Cache |
| concepts[6].id | https://openalex.org/C99844830 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45636457204818726 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[6].display_name | Scaling |
| concepts[7].id | https://openalex.org/C206588197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45230674743652344 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q846574 |
| concepts[7].display_name | Reuse |
| concepts[8].id | https://openalex.org/C113775141 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44806116819381714 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[8].display_name | Computer engineering |
| concepts[9].id | https://openalex.org/C188045654 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42133674025535583 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17148339 |
| concepts[9].display_name | Memory bandwidth |
| concepts[10].id | https://openalex.org/C165005293 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4126089811325073 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1074500 |
| concepts[10].display_name | Chip |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.21181106567382812 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14995813369750977 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8280191421508789 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/exploit |
| keywords[1].score | 0.6726312637329102 |
| keywords[1].display_name | Exploit |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6571764945983887 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/bandwidth |
| keywords[3].score | 0.6409326195716858 |
| keywords[3].display_name | Bandwidth (computing) |
| keywords[4].id | https://openalex.org/keywords/parallel-computing |
| keywords[4].score | 0.5349453687667847 |
| keywords[4].display_name | Parallel computing |
| keywords[5].id | https://openalex.org/keywords/cache |
| keywords[5].score | 0.4988386631011963 |
| keywords[5].display_name | Cache |
| keywords[6].id | https://openalex.org/keywords/scaling |
| keywords[6].score | 0.45636457204818726 |
| keywords[6].display_name | Scaling |
| keywords[7].id | https://openalex.org/keywords/reuse |
| keywords[7].score | 0.45230674743652344 |
| keywords[7].display_name | Reuse |
| keywords[8].id | https://openalex.org/keywords/computer-engineering |
| keywords[8].score | 0.44806116819381714 |
| keywords[8].display_name | Computer engineering |
| keywords[9].id | https://openalex.org/keywords/memory-bandwidth |
| keywords[9].score | 0.42133674025535583 |
| keywords[9].display_name | Memory bandwidth |
| keywords[10].id | https://openalex.org/keywords/chip |
| keywords[10].score | 0.4126089811325073 |
| keywords[10].display_name | Chip |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.21181106567382812 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.14995813369750977 |
| keywords[12].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2104.08734 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2104.08734 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2104.08734 |
| locations[1].id | mag:3156219765 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://export.arxiv.org/pdf/2104.08734 |
| locations[2].id | doi:10.48550/arxiv.2104.08734 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2104.08734 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001458388 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3370-3576 |
| authorships[0].author.display_name | Ashish Gondimalla |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ashish Gondimalla |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060960403 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sree Charan Gundabolu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sree Charan Gundabolu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103145581 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6624-4372 |
| authorships[2].author.display_name | T. N. Vijaykumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | T. N. Vijaykumar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069139257 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4164-4542 |
| authorships[3].author.display_name | Mithuna Thottethodi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mithuna Thottethodi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.08734 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Barrier-Free Large-Scale Sparse Tensor Accelerator (BARISTA) For Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3013495280, https://openalex.org/W3189487902, https://openalex.org/W3169326189, https://openalex.org/W2964588512, https://openalex.org/W3007444108, https://openalex.org/W2973613048, https://openalex.org/W3187481008, https://openalex.org/W3137385045, https://openalex.org/W3015599230, https://openalex.org/W3125142456, https://openalex.org/W3177229224, https://openalex.org/W2767644592, https://openalex.org/W2990710024, https://openalex.org/W2943178787, https://openalex.org/W2922973335, https://openalex.org/W2971105318, https://openalex.org/W2773151336, https://openalex.org/W3083448369, https://openalex.org/W3005946836, https://openalex.org/W2946506871 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.08734 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.08734 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.08734 |
| primary_location.id | pmh:oai:arXiv.org:2104.08734 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2104.08734 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2104.08734 |
| publication_date | 2021-04-18 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2759398875, https://openalex.org/W2964299589, https://openalex.org/W2518281301, https://openalex.org/W2565305208, https://openalex.org/W1981252059, https://openalex.org/W2606722458, https://openalex.org/W2565851976, https://openalex.org/W2963674932, https://openalex.org/W2625457103, https://openalex.org/W2285660444, https://openalex.org/W2657126969, https://openalex.org/W2904607988, https://openalex.org/W3024621361, https://openalex.org/W2067523571, https://openalex.org/W2516141709, https://openalex.org/W2048266589, https://openalex.org/W2541839172, https://openalex.org/W2980113464, https://openalex.org/W2979310060, https://openalex.org/W2112796928, https://openalex.org/W2949870694, https://openalex.org/W2289252105, https://openalex.org/W2794260578, https://openalex.org/W2979545880, https://openalex.org/W3104393472, https://openalex.org/W2163605009, https://openalex.org/W2900327659, https://openalex.org/W2508602506, https://openalex.org/W2613989746, https://openalex.org/W2603836393, https://openalex.org/W2949650786, https://openalex.org/W2900228909, https://openalex.org/W2952020226, https://openalex.org/W1994371611, https://openalex.org/W2883929540, https://openalex.org/W2000967104, https://openalex.org/W2904902077, https://openalex.org/W2913104037, https://openalex.org/W2128853364, https://openalex.org/W2108598243, https://openalex.org/W2286365479, https://openalex.org/W2979439447, https://openalex.org/W2904327456 |
| referenced_works_count | 43 |
| abstract_inverted_index.1 | 271 |
| abstract_inverted_index.W | 281 |
| abstract_inverted_index.a | 109, 213, 242, 244, 246 |
| abstract_inverted_index.1K | 53 |
| abstract_inverted_index.8K | 268 |
| abstract_inverted_index.To | 130 |
| abstract_inverted_index.an | 250 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.at | 49, 225, 270 |
| abstract_inverted_index.be | 68 |
| abstract_inverted_index.by | 159, 187 |
| abstract_inverted_index.in | 20, 39, 61, 80 |
| abstract_inverted_index.is | 85, 144 |
| abstract_inverted_index.of | 73, 100, 115, 126, 260, 267 |
| abstract_inverted_index.on | 232 |
| abstract_inverted_index.to | 57, 67, 71 |
| abstract_inverted_index.up | 70, 150 |
| abstract_inverted_index.we | 133 |
| abstract_inverted_index.(1) | 143 |
| abstract_inverted_index.(2) | 154 |
| abstract_inverted_index.(3) | 171 |
| abstract_inverted_index.(4) | 192 |
| abstract_inverted_index.(5) | 203 |
| abstract_inverted_index.170 | 280 |
| abstract_inverted_index.213 | 276 |
| abstract_inverted_index.32K | 78 |
| abstract_inverted_index.CNN | 152 |
| abstract_inverted_index.GHz | 272 |
| abstract_inverted_index.Our | 228 |
| abstract_inverted_index.RTL | 262 |
| abstract_inverted_index.and | 24, 28, 43, 104, 128, 166, 178, 202, 218, 249, 279 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.but | 118 |
| abstract_inverted_index.for | 9, 15, 26, 148, 264 |
| abstract_inverted_index.low | 219 |
| abstract_inverted_index.map | 164 |
| abstract_inverted_index.nor | 122 |
| abstract_inverted_index.not | 119 |
| abstract_inverted_index.one | 113 |
| abstract_inverted_index.our | 261 |
| abstract_inverted_index.the | 21, 63, 74, 81, 97, 123, 135, 145, 162, 168, 180, 189, 226 |
| abstract_inverted_index.via | 174, 197, 212, 221 |
| abstract_inverted_index.2.5x | 239 |
| abstract_inverted_index.ASIC | 258 |
| abstract_inverted_index.CNNs | 17 |
| abstract_inverted_index.MACs | 79, 269 |
| abstract_inverted_index.Such | 83 |
| abstract_inverted_index.area | 278 |
| abstract_inverted_index.been | 46 |
| abstract_inverted_index.both | 40 |
| abstract_inverted_index.cost | 95 |
| abstract_inverted_index.end, | 132 |
| abstract_inverted_index.few, | 214 |
| abstract_inverted_index.four | 265 |
| abstract_inverted_index.have | 45, 66 |
| abstract_inverted_index.high | 209 |
| abstract_inverted_index.load | 101, 116, 193 |
| abstract_inverted_index.maps | 23, 42, 186 |
| abstract_inverted_index.only | 48 |
| abstract_inverted_index.show | 230 |
| abstract_inverted_index.than | 241 |
| abstract_inverted_index.that | 35, 131 |
| abstract_inverted_index.work | 196, 200 |
| abstract_inverted_index.1.7x, | 238 |
| abstract_inverted_index.2.2x, | 237 |
| abstract_inverted_index.45-nm | 256 |
| abstract_inverted_index.5.4x, | 236 |
| abstract_inverted_index.TPU). | 82 |
| abstract_inverted_index.Using | 255 |
| abstract_inverted_index.basic | 175 |
| abstract_inverted_index.cache | 210 |
| abstract_inverted_index.clock | 273 |
| abstract_inverted_index.dense | 75 |
| abstract_inverted_index.first | 146 |
| abstract_inverted_index.full, | 62 |
| abstract_inverted_index.input | 163, 185 |
| abstract_inverted_index.other | 120, 124 |
| abstract_inverted_index.reuse | 89 |
| abstract_inverted_index.since | 87 |
| abstract_inverted_index.small | 50 |
| abstract_inverted_index.that, | 231 |
| abstract_inverted_index.their | 59 |
| abstract_inverted_index.tools | 8 |
| abstract_inverted_index.which | 207 |
| abstract_inverted_index.wide, | 215 |
| abstract_inverted_index.zeros | 19 |
| abstract_inverted_index.(CNNs) | 3 |
| abstract_inverted_index.(e.g., | 52, 77 |
| abstract_inverted_index.Recent | 12 |
| abstract_inverted_index.Sparse | 33 |
| abstract_inverted_index.aspect | 114 |
| abstract_inverted_index.avoids | 179 |
| abstract_inverted_index.better | 240 |
| abstract_inverted_index.buffer | 176 |
| abstract_inverted_index.demand | 158 |
| abstract_inverted_index.dense, | 243 |
| abstract_inverted_index.design | 263 |
| abstract_inverted_index.energy | 29 |
| abstract_inverted_index.filter | 169 |
| abstract_inverted_index.incurs | 92 |
| abstract_inverted_index.issues | 99, 125 |
| abstract_inverted_index.levels | 72 |
| abstract_inverted_index.losing | 31 |
| abstract_inverted_index.mm$^2$ | 277 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.output | 190 |
| abstract_inverted_index.power. | 282 |
| abstract_inverted_index.raises | 96 |
| abstract_inverted_index.scaled | 69 |
| abstract_inverted_index.scales | 51 |
| abstract_inverted_index.shared | 216 |
| abstract_inverted_index.sparse | 16, 64, 138, 151 |
| abstract_inverted_index.speed, | 274 |
| abstract_inverted_index.tensor | 139 |
| abstract_inverted_index.visual | 10 |
| abstract_inverted_index.BARISTA | 142 |
| abstract_inverted_index.barista | 234 |
| abstract_inverted_index.barrier | 94 |
| abstract_inverted_index.between | 183 |
| abstract_inverted_index.buffers | 217, 224 |
| abstract_inverted_index.demand. | 107 |
| abstract_inverted_index.dynamic | 198 |
| abstract_inverted_index.employs | 204 |
| abstract_inverted_index.ensuing | 181 |
| abstract_inverted_index.exploit | 18, 36 |
| abstract_inverted_index.feature | 22, 41 |
| abstract_inverted_index.filters | 25, 44 |
| abstract_inverted_index.on-chip | 105, 156 |
| abstract_inverted_index.private | 223 |
| abstract_inverted_index.propose | 134 |
| abstract_inverted_index.realize | 58 |
| abstract_inverted_index.reduces | 155, 172 |
| abstract_inverted_index.reports | 275 |
| abstract_inverted_index.scaling | 84, 149 |
| abstract_inverted_index.scheme, | 111 |
| abstract_inverted_index.sharing | 177 |
| abstract_inverted_index.studied | 47 |
| abstract_inverted_index.through | 90 |
| abstract_inverted_index.units). | 55 |
| abstract_inverted_index.without | 30 |
| abstract_inverted_index.However, | 56 |
| abstract_inverted_index.SparTen, | 108 |
| abstract_inverted_index.achieves | 208 |
| abstract_inverted_index.aspects, | 121 |
| abstract_inverted_index.average, | 233 |
| abstract_inverted_index.balances | 194 |
| abstract_inverted_index.barriers | 182 |
| abstract_inverted_index.buffers; | 191 |
| abstract_inverted_index.clusters | 266 |
| abstract_inverted_index.coloring | 188 |
| abstract_inverted_index.compute. | 227 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.implicit | 93 |
| abstract_inverted_index.iso-area | 251 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.performs | 235 |
| abstract_inverted_index.powerful | 7 |
| abstract_inverted_index.previous | 110 |
| abstract_inverted_index.requests | 165 |
| abstract_inverted_index.snarfing | 167 |
| abstract_inverted_index.sparsity | 38 |
| abstract_inverted_index.accuracy. | 32 |
| abstract_inverted_index.achieving | 88 |
| abstract_inverted_index.addresses | 112 |
| abstract_inverted_index.balancing | 117 |
| abstract_inverted_index.bandwidth | 106, 157, 211 |
| abstract_inverted_index.buffering | 127, 173, 206, 220 |
| abstract_inverted_index.narrower, | 222 |
| abstract_inverted_index.proposals | 14 |
| abstract_inverted_index.requests; | 170 |
| abstract_inverted_index.synthesis | 259 |
| abstract_inverted_index.two-sided | 37, 252 |
| abstract_inverted_index.(BARISTA). | 141 |
| abstract_inverted_index.advantages | 60 |
| abstract_inverted_index.bandwidth. | 129 |
| abstract_inverted_index.broadcasts | 91 |
| abstract_inverted_index.buffering, | 103 |
| abstract_inverted_index.imbalance, | 102 |
| abstract_inverted_index.one-sided, | 245 |
| abstract_inverted_index.two-sided, | 248 |
| abstract_inverted_index.accelerator | 140 |
| abstract_inverted_index.assignment; | 201 |
| abstract_inverted_index.challenging | 86 |
| abstract_inverted_index.consecutive | 184 |
| abstract_inverted_index.large-scale | 137 |
| abstract_inverted_index.performance | 27 |
| abstract_inverted_index.round-robin | 199 |
| abstract_inverted_index.simulations | 229 |
| abstract_inverted_index.technology, | 257 |
| abstract_inverted_index.telescoping | 160 |
| abstract_inverted_index.architecture | 13, 147 |
| abstract_inverted_index.barrier-free | 136 |
| abstract_inverted_index.hierarchical | 205 |
| abstract_inverted_index.intra-filter | 195 |
| abstract_inverted_index.recognition. | 11 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.accelerators; | 153 |
| abstract_inverted_index.architecture, | 253 |
| abstract_inverted_index.architectures | 34, 65, 76 |
| abstract_inverted_index.inter-related | 98 |
| abstract_inverted_index.respectively. | 254 |
| abstract_inverted_index.naively-scaled | 247 |
| abstract_inverted_index.request-combining | 161 |
| abstract_inverted_index.multiply-accumulate(MAC) | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |