Bayesian Counterfactual Machine Learning Individualizes Radiation Modality Selection to Mitigate Immunosuppression Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1200/cci-25-00058
PURPOSE Lymphocytes play critical roles in cancer immunity and tumor surveillance. Radiation-induced lymphopenia (RIL) is a common side effect observed in patients with cancer undergoing chemoradiation therapy (CRT), leading to impaired immunity and worse clinical outcomes. Although proton beam therapy (PBT) has been suggested to reduce RIL risk compared with intensity-modulated radiation therapy (IMRT), this study used Bayesian counterfactual machine learning to identify distinct patient profiles and inform personalized radiation modality choice. METHODS A novel Bayesian causal inferential technique is introduced and applied to a matched retrospective cohort of 510 patients with esophageal cancer undergoing CRT to identify patient profiles for which immunosuppression could have been mitigated from radiation modality selection. RESULTS BMI, age, baseline absolute lymphocyte count (ALC), and planning target volume determined the extent to which reductions in ALCs varied by radiation modality. Five patient profiles were identified. Significant variation in ALC nadir between PBT and IMRT was observed in three of the patient subtypes. Notably, older patients (age >69 years) with normal weight experienced a two-fold reduction in mean ALC nadir when treated with IMRT versus PBT. Mean ALC nadir was reduced significantly for IMRT patients with lower ALC at baseline (<1.6 k/µL) who were overweight or obese when compared with PBT, whereas overweight patients with higher baseline ALC showed clinical equipoise between modalities. CONCLUSION Individualized radiation therapy selection can be an important tool to minimize immunosuppression for high-risk patients. The Bayesian counterfactual modeling techniques presented in this article are flexible enough to capture complex, nonlinear patterns while estimating interpretable patient profiles for translation into clinical protocols.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1200/cci-25-00058
- OA Status
- hybrid
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414051635
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414051635Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1200/cci-25-00058Digital Object Identifier
- Title
-
Bayesian Counterfactual Machine Learning Individualizes Radiation Modality Selection to Mitigate ImmunosuppressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Duo Yu, Michael J. Kane, Yiqing Chen, Steven H. Lin, Radhe Mohan, Brian P. HobbsList of authors in order
- Landing page
-
https://doi.org/10.1200/cci-25-00058Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1200/cci-25-00058Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414051635 |
|---|---|
| doi | https://doi.org/10.1200/cci-25-00058 |
| ids.doi | https://doi.org/10.1200/cci-25-00058 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40920994 |
| ids.openalex | https://openalex.org/W4414051635 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001499 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Bayes Theorem |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005260 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Female |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000368 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Aged |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012189 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Retrospective Studies |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008875 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Middle Aged |
| mesh[8].qualifier_ui | Q000009 |
| mesh[8].descriptor_ui | D050397 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | adverse effects |
| mesh[8].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D050397 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[10].qualifier_ui | Q000532 |
| mesh[10].descriptor_ui | D004938 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | radiotherapy |
| mesh[10].descriptor_name | Esophageal Neoplasms |
| mesh[11].qualifier_ui | Q000276 |
| mesh[11].descriptor_ui | D004938 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | immunology |
| mesh[11].descriptor_name | Esophageal Neoplasms |
| mesh[12].qualifier_ui | Q000209 |
| mesh[12].descriptor_ui | D008231 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | etiology |
| mesh[12].descriptor_name | Lymphopenia |
| mesh[13].qualifier_ui | Q000517 |
| mesh[13].descriptor_ui | D008231 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | prevention & control |
| mesh[13].descriptor_name | Lymphopenia |
| mesh[14].qualifier_ui | Q000009 |
| mesh[14].descriptor_ui | D059248 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | adverse effects |
| mesh[14].descriptor_name | Chemoradiotherapy |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D059248 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Chemoradiotherapy |
| mesh[16].qualifier_ui | Q000009 |
| mesh[16].descriptor_ui | D061766 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | adverse effects |
| mesh[16].descriptor_name | Proton Therapy |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D061766 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Proton Therapy |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D007165 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Immunosuppression Therapy |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D001499 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Bayes Theorem |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000069550 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Machine Learning |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005260 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Female |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008297 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Male |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000368 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Aged |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D012189 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Retrospective Studies |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D008875 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Middle Aged |
| mesh[27].qualifier_ui | Q000009 |
| mesh[27].descriptor_ui | D050397 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | adverse effects |
| mesh[27].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D050397 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[29].qualifier_ui | Q000532 |
| mesh[29].descriptor_ui | D004938 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | radiotherapy |
| mesh[29].descriptor_name | Esophageal Neoplasms |
| mesh[30].qualifier_ui | Q000276 |
| mesh[30].descriptor_ui | D004938 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | immunology |
| mesh[30].descriptor_name | Esophageal Neoplasms |
| mesh[31].qualifier_ui | Q000209 |
| mesh[31].descriptor_ui | D008231 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | etiology |
| mesh[31].descriptor_name | Lymphopenia |
| mesh[32].qualifier_ui | Q000517 |
| mesh[32].descriptor_ui | D008231 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | prevention & control |
| mesh[32].descriptor_name | Lymphopenia |
| mesh[33].qualifier_ui | Q000009 |
| mesh[33].descriptor_ui | D059248 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | adverse effects |
| mesh[33].descriptor_name | Chemoradiotherapy |
| mesh[34].qualifier_ui | Q000379 |
| mesh[34].descriptor_ui | D059248 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | methods |
| mesh[34].descriptor_name | Chemoradiotherapy |
| mesh[35].qualifier_ui | Q000009 |
| mesh[35].descriptor_ui | D061766 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | adverse effects |
| mesh[35].descriptor_name | Proton Therapy |
| mesh[36].qualifier_ui | Q000379 |
| mesh[36].descriptor_ui | D061766 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | methods |
| mesh[36].descriptor_name | Proton Therapy |
| mesh[37].qualifier_ui | Q000379 |
| mesh[37].descriptor_ui | D007165 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | methods |
| mesh[37].descriptor_name | Immunosuppression Therapy |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D006801 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Humans |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D001499 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Bayes Theorem |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000069550 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Machine Learning |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D005260 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Female |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D008297 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Male |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D000368 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Aged |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D012189 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Retrospective Studies |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D008875 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Middle Aged |
| mesh[46].qualifier_ui | Q000009 |
| mesh[46].descriptor_ui | D050397 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | adverse effects |
| mesh[46].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[47].qualifier_ui | Q000379 |
| mesh[47].descriptor_ui | D050397 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | methods |
| mesh[47].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[48].qualifier_ui | Q000532 |
| mesh[48].descriptor_ui | D004938 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | radiotherapy |
| mesh[48].descriptor_name | Esophageal Neoplasms |
| mesh[49].qualifier_ui | Q000276 |
| mesh[49].descriptor_ui | D004938 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | immunology |
| mesh[49].descriptor_name | Esophageal Neoplasms |
| type | article |
| title | Bayesian Counterfactual Machine Learning Individualizes Radiation Modality Selection to Mitigate Immunosuppression |
| biblio.issue | 9 |
| biblio.volume | 9 |
| biblio.last_page | e2500058 |
| biblio.first_page | e2500058 |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9926000237464905 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9901999831199646 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10619 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Esophageal Cancer Research and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1200/cci-25-00058 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210181501 |
| locations[0].source.issn | 2473-4276 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2473-4276 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | JCO Clinical Cancer Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310315671 |
| locations[0].source.host_organization_name | Lippincott Williams & Wilkins |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| locations[0].source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JCO Clinical Cancer Informatics |
| locations[0].landing_page_url | https://doi.org/10.1200/cci-25-00058 |
| locations[1].id | pmid:40920994 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JCO clinical cancer informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40920994 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5102873899 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8988-1646 |
| authorships[0].author.display_name | Duo Yu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204308271 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI |
| authorships[0].institutions[0].id | https://openalex.org/I204308271 |
| authorships[0].institutions[0].ror | https://ror.org/00qqv6244 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204308271 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Medical College of Wisconsin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duo Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI |
| authorships[1].author.id | https://openalex.org/A5084276871 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1899-6662 |
| authorships[1].author.display_name | Michael J. Kane |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics, Yale School of Public Health, New Haven, CT |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1343551460 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[1].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[1].institutions[1].id | https://openalex.org/I32971472 |
| authorships[1].institutions[1].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael J. Kane |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, Yale School of Public Health, New Haven, CT, Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[2].author.id | https://openalex.org/A5012440699 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3282-3979 |
| authorships[2].author.display_name | Yiqing Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91045830 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX |
| authorships[2].institutions[0].id | https://openalex.org/I91045830 |
| authorships[2].institutions[0].ror | https://ror.org/01f5ytq51 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91045830 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Texas A&M University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yiqing Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX |
| authorships[3].author.id | https://openalex.org/A5078248328 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4411-0634 |
| authorships[3].author.display_name | Steven H. Lin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[3].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Steven H. Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[4].author.id | https://openalex.org/A5041943880 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3746-4557 |
| authorships[4].author.display_name | Radhe Mohan |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[4].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Radhe Mohan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX |
| authorships[5].author.id | https://openalex.org/A5002744671 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2189-5846 |
| authorships[5].author.display_name | Brian P. Hobbs |
| authorships[5].affiliations[0].raw_affiliation_string | Telperian, Austin, TX |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Brian P. Hobbs |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Telperian, Austin, TX |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1200/cci-25-00058 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Counterfactual Machine Learning Individualizes Radiation Modality Selection to Mitigate Immunosuppression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9926000237464905 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W1936443018, https://openalex.org/W3114051225, https://openalex.org/W2495312616, https://openalex.org/W2053295005, https://openalex.org/W2043483232, https://openalex.org/W4320041232, https://openalex.org/W2052056785, https://openalex.org/W2497092908, https://openalex.org/W2102483815, https://openalex.org/W236355199 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1200/cci-25-00058 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210181501 |
| best_oa_location.source.issn | 2473-4276 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2473-4276 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | JCO Clinical Cancer Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315671 |
| best_oa_location.source.host_organization_name | Lippincott Williams & Wilkins |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| best_oa_location.source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JCO Clinical Cancer Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1200/cci-25-00058 |
| primary_location.id | doi:10.1200/cci-25-00058 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210181501 |
| primary_location.source.issn | 2473-4276 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2473-4276 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | JCO Clinical Cancer Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310315671 |
| primary_location.source.host_organization_name | Lippincott Williams & Wilkins |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315671, https://openalex.org/P4310318547 |
| primary_location.source.host_organization_lineage_names | Lippincott Williams & Wilkins, Wolters Kluwer |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JCO Clinical Cancer Informatics |
| primary_location.landing_page_url | https://doi.org/10.1200/cci-25-00058 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4400313968, https://openalex.org/W2793170779, https://openalex.org/W1485476587, https://openalex.org/W3186944277, https://openalex.org/W2514071032, https://openalex.org/W2964809472, https://openalex.org/W3089306354, https://openalex.org/W1973995418, https://openalex.org/W2047866259, https://openalex.org/W3012051758, https://openalex.org/W2534249644, https://openalex.org/W2775604892, https://openalex.org/W2989018645, https://openalex.org/W3147634793, https://openalex.org/W2908620380, https://openalex.org/W2621240220, https://openalex.org/W4386258540, https://openalex.org/W2295598076, https://openalex.org/W2805893819, https://openalex.org/W2592665192, https://openalex.org/W2141917698, https://openalex.org/W2175885582, https://openalex.org/W236448318, https://openalex.org/W4406785145, https://openalex.org/W2979852980, https://openalex.org/W2154149573, https://openalex.org/W3175193591, https://openalex.org/W2064790857, https://openalex.org/W2020946357, https://openalex.org/W1995224390, https://openalex.org/W1973521570, https://openalex.org/W1844985714, https://openalex.org/W2911964244, https://openalex.org/W4400265910, https://openalex.org/W2913411021, https://openalex.org/W2159805452, https://openalex.org/W3024906808, https://openalex.org/W2176372762, https://openalex.org/W1757492577, https://openalex.org/W4401009084, https://openalex.org/W4398768667, https://openalex.org/W3207365713, https://openalex.org/W3107862034 |
| referenced_works_count | 43 |
| abstract_inverted_index.A | 73 |
| abstract_inverted_index.a | 15, 84, 167 |
| abstract_inverted_index.an | 224 |
| abstract_inverted_index.at | 192 |
| abstract_inverted_index.be | 223 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 5, 20, 129, 142, 151, 170, 239 |
| abstract_inverted_index.is | 14, 79 |
| abstract_inverted_index.of | 88, 153 |
| abstract_inverted_index.or | 199 |
| abstract_inverted_index.to | 29, 44, 61, 83, 96, 126, 227, 245 |
| abstract_inverted_index.510 | 89 |
| abstract_inverted_index.ALC | 143, 172, 181, 191, 211 |
| abstract_inverted_index.CRT | 95 |
| abstract_inverted_index.PBT | 146 |
| abstract_inverted_index.RIL | 46 |
| abstract_inverted_index.The | 233 |
| abstract_inverted_index.and | 8, 32, 66, 81, 119, 147 |
| abstract_inverted_index.are | 242 |
| abstract_inverted_index.can | 222 |
| abstract_inverted_index.for | 100, 186, 230, 255 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.the | 124, 154 |
| abstract_inverted_index.was | 149, 183 |
| abstract_inverted_index.who | 196 |
| abstract_inverted_index.(age | 160 |
| abstract_inverted_index.ALCs | 130 |
| abstract_inverted_index.BMI, | 112 |
| abstract_inverted_index.Five | 135 |
| abstract_inverted_index.IMRT | 148, 177, 187 |
| abstract_inverted_index.Mean | 180 |
| abstract_inverted_index.PBT, | 204 |
| abstract_inverted_index.PBT. | 179 |
| abstract_inverted_index.age, | 113 |
| abstract_inverted_index.beam | 38 |
| abstract_inverted_index.been | 42, 105 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.have | 104 |
| abstract_inverted_index.into | 257 |
| abstract_inverted_index.mean | 171 |
| abstract_inverted_index.play | 2 |
| abstract_inverted_index.risk | 47 |
| abstract_inverted_index.side | 17 |
| abstract_inverted_index.this | 54, 240 |
| abstract_inverted_index.tool | 226 |
| abstract_inverted_index.used | 56 |
| abstract_inverted_index.were | 138, 197 |
| abstract_inverted_index.when | 174, 201 |
| abstract_inverted_index.with | 22, 49, 91, 163, 176, 189, 203, 208 |
| abstract_inverted_index.(PBT) | 40 |
| abstract_inverted_index.(RIL) | 13 |
| abstract_inverted_index.could | 103 |
| abstract_inverted_index.count | 117 |
| abstract_inverted_index.lower | 190 |
| abstract_inverted_index.nadir | 144, 173, 182 |
| abstract_inverted_index.novel | 74 |
| abstract_inverted_index.obese | 200 |
| abstract_inverted_index.older | 158 |
| abstract_inverted_index.roles | 4 |
| abstract_inverted_index.study | 55 |
| abstract_inverted_index.three | 152 |
| abstract_inverted_index.tumor | 9 |
| abstract_inverted_index.which | 101, 127 |
| abstract_inverted_index.while | 250 |
| abstract_inverted_index.worse | 33 |
| abstract_inverted_index.>69 | 161 |
| abstract_inverted_index.(ALC), | 118 |
| abstract_inverted_index.(CRT), | 27 |
| abstract_inverted_index.cancer | 6, 23, 93 |
| abstract_inverted_index.causal | 76 |
| abstract_inverted_index.cohort | 87 |
| abstract_inverted_index.common | 16 |
| abstract_inverted_index.effect | 18 |
| abstract_inverted_index.enough | 244 |
| abstract_inverted_index.extent | 125 |
| abstract_inverted_index.higher | 209 |
| abstract_inverted_index.inform | 67 |
| abstract_inverted_index.k/µL) | 195 |
| abstract_inverted_index.normal | 164 |
| abstract_inverted_index.proton | 37 |
| abstract_inverted_index.reduce | 45 |
| abstract_inverted_index.showed | 212 |
| abstract_inverted_index.target | 121 |
| abstract_inverted_index.varied | 131 |
| abstract_inverted_index.versus | 178 |
| abstract_inverted_index.volume | 122 |
| abstract_inverted_index.weight | 165 |
| abstract_inverted_index.years) | 162 |
| abstract_inverted_index.(IMRT), | 53 |
| abstract_inverted_index.METHODS | 72 |
| abstract_inverted_index.PURPOSE | 0 |
| abstract_inverted_index.RESULTS | 111 |
| abstract_inverted_index.applied | 82 |
| abstract_inverted_index.article | 241 |
| abstract_inverted_index.between | 145, 215 |
| abstract_inverted_index.capture | 246 |
| abstract_inverted_index.choice. | 71 |
| abstract_inverted_index.leading | 28 |
| abstract_inverted_index.machine | 59 |
| abstract_inverted_index.matched | 85 |
| abstract_inverted_index.patient | 64, 98, 136, 155, 253 |
| abstract_inverted_index.reduced | 184 |
| abstract_inverted_index.therapy | 26, 39, 52, 220 |
| abstract_inverted_index.treated | 175 |
| abstract_inverted_index.whereas | 205 |
| abstract_inverted_index.(<1.6 | 194 |
| abstract_inverted_index.Although | 36 |
| abstract_inverted_index.Bayesian | 57, 75, 234 |
| abstract_inverted_index.Notably, | 157 |
| abstract_inverted_index.absolute | 115 |
| abstract_inverted_index.baseline | 114, 193, 210 |
| abstract_inverted_index.clinical | 34, 213, 258 |
| abstract_inverted_index.compared | 48, 202 |
| abstract_inverted_index.complex, | 247 |
| abstract_inverted_index.critical | 3 |
| abstract_inverted_index.distinct | 63 |
| abstract_inverted_index.flexible | 243 |
| abstract_inverted_index.identify | 62, 97 |
| abstract_inverted_index.immunity | 7, 31 |
| abstract_inverted_index.impaired | 30 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.minimize | 228 |
| abstract_inverted_index.modality | 70, 109 |
| abstract_inverted_index.modeling | 236 |
| abstract_inverted_index.observed | 19, 150 |
| abstract_inverted_index.patients | 21, 90, 159, 188, 207 |
| abstract_inverted_index.patterns | 249 |
| abstract_inverted_index.planning | 120 |
| abstract_inverted_index.profiles | 65, 99, 137, 254 |
| abstract_inverted_index.two-fold | 168 |
| abstract_inverted_index.equipoise | 214 |
| abstract_inverted_index.high-risk | 231 |
| abstract_inverted_index.important | 225 |
| abstract_inverted_index.mitigated | 106 |
| abstract_inverted_index.modality. | 134 |
| abstract_inverted_index.nonlinear | 248 |
| abstract_inverted_index.outcomes. | 35 |
| abstract_inverted_index.patients. | 232 |
| abstract_inverted_index.presented | 238 |
| abstract_inverted_index.radiation | 51, 69, 108, 133, 219 |
| abstract_inverted_index.reduction | 169 |
| abstract_inverted_index.selection | 221 |
| abstract_inverted_index.subtypes. | 156 |
| abstract_inverted_index.suggested | 43 |
| abstract_inverted_index.technique | 78 |
| abstract_inverted_index.variation | 141 |
| abstract_inverted_index.CONCLUSION | 217 |
| abstract_inverted_index.determined | 123 |
| abstract_inverted_index.esophageal | 92 |
| abstract_inverted_index.estimating | 251 |
| abstract_inverted_index.introduced | 80 |
| abstract_inverted_index.lymphocyte | 116 |
| abstract_inverted_index.overweight | 198, 206 |
| abstract_inverted_index.protocols. | 259 |
| abstract_inverted_index.reductions | 128 |
| abstract_inverted_index.selection. | 110 |
| abstract_inverted_index.techniques | 237 |
| abstract_inverted_index.undergoing | 24, 94 |
| abstract_inverted_index.Lymphocytes | 1 |
| abstract_inverted_index.Significant | 140 |
| abstract_inverted_index.experienced | 166 |
| abstract_inverted_index.identified. | 139 |
| abstract_inverted_index.inferential | 77 |
| abstract_inverted_index.lymphopenia | 12 |
| abstract_inverted_index.modalities. | 216 |
| abstract_inverted_index.translation | 256 |
| abstract_inverted_index.personalized | 68 |
| abstract_inverted_index.interpretable | 252 |
| abstract_inverted_index.retrospective | 86 |
| abstract_inverted_index.significantly | 185 |
| abstract_inverted_index.surveillance. | 10 |
| abstract_inverted_index.Individualized | 218 |
| abstract_inverted_index.chemoradiation | 25 |
| abstract_inverted_index.counterfactual | 58, 235 |
| abstract_inverted_index.Radiation-induced | 11 |
| abstract_inverted_index.immunosuppression | 102, 229 |
| abstract_inverted_index.intensity-modulated | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.36361113 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |