Bayesian deep learning for vehicle battery health prognostics: Incorporating behavioral perception and informative priors Article Swipe
Kangwei Yan
,
Junyong Lu
,
Delin Zeng
,
Long Cheng
,
Tao Ma
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.est.2025.119659
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.est.2025.119659
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.est.2025.119659
- OA Status
- hybrid
- References
- 47
- OpenAlex ID
- https://openalex.org/W7108230561
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108230561Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.est.2025.119659Digital Object Identifier
- Title
-
Bayesian deep learning for vehicle battery health prognostics: Incorporating behavioral perception and informative priorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Kangwei Yan, Junyong Lu, Delin Zeng, Long Cheng, Tao MaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.est.2025.119659Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.est.2025.119659Direct OA link when available
- Concepts
-
Prior probability, Artificial intelligence, Deep learning, Computer science, Machine learning, Perception, Bayesian probability, Battery (electricity), Bayesian inference, Deep belief network, Bayes' theorem, Supervised learning, Pattern recognition (psychology), Behavioral modeling, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
Full payload
| id | https://openalex.org/W7108230561 |
|---|---|
| doi | https://doi.org/10.1016/j.est.2025.119659 |
| ids.doi | https://doi.org/10.1016/j.est.2025.119659 |
| ids.openalex | https://openalex.org/W7108230561 |
| fwci | 0.0 |
| type | article |
| title | Bayesian deep learning for vehicle battery health prognostics: Incorporating behavioral perception and informative priors |
| biblio.issue | |
| biblio.volume | 143 |
| biblio.last_page | 119659 |
| biblio.first_page | 119659 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8998319506645203 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.008640182204544544 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T10768 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.006485166028141975 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electric Vehicles and Infrastructure |
| is_xpac | False |
| apc_list.value | 2940 |
| apc_list.currency | USD |
| apc_list.value_usd | 2940 |
| apc_paid.value | 2940 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2940 |
| concepts[0].id | https://openalex.org/C177769412 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7702627182006836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[0].display_name | Prior probability |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7386221289634705 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6895649433135986 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.571439266204834 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.547649085521698 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C26760741 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5209758281707764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[5].display_name | Perception |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5197235941886902 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C555008776 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4963032603263855 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[7].display_name | Battery (electricity) |
| concepts[8].id | https://openalex.org/C160234255 |
| concepts[8].level | 3 |
| concepts[8].score | 0.3903080224990845 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[8].display_name | Bayesian inference |
| concepts[9].id | https://openalex.org/C97385483 |
| concepts[9].level | 3 |
| concepts[9].score | 0.34035587310791016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[9].display_name | Deep belief network |
| concepts[10].id | https://openalex.org/C207201462 |
| concepts[10].level | 3 |
| concepts[10].score | 0.33086663484573364 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[10].display_name | Bayes' theorem |
| concepts[11].id | https://openalex.org/C136389625 |
| concepts[11].level | 3 |
| concepts[11].score | 0.30651867389678955 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[11].display_name | Supervised learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2770935297012329 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C78639753 |
| concepts[13].level | 2 |
| concepts[13].score | 0.26990941166877747 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3318160 |
| concepts[13].display_name | Behavioral modeling |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2558879852294922 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/prior-probability |
| keywords[0].score | 0.7702627182006836 |
| keywords[0].display_name | Prior probability |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.6895649433135986 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/perception |
| keywords[2].score | 0.5209758281707764 |
| keywords[2].display_name | Perception |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5197235941886902 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/battery |
| keywords[4].score | 0.4963032603263855 |
| keywords[4].display_name | Battery (electricity) |
| keywords[5].id | https://openalex.org/keywords/bayesian-inference |
| keywords[5].score | 0.3903080224990845 |
| keywords[5].display_name | Bayesian inference |
| language | en |
| locations[0].id | doi:10.1016/j.est.2025.119659 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764865925 |
| locations[0].source.issn | 2352-152X, 2352-1538 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2352-152X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Energy Storage |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Energy Storage |
| locations[0].landing_page_url | https://doi.org/10.1016/j.est.2025.119659 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A3112180796 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8741-1352 |
| authorships[0].author.display_name | Kangwei Yan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kangwei Yan |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2098705935 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2934-2472 |
| authorships[1].author.display_name | Junyong Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junyong Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2317246401 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6461-9783 |
| authorships[2].author.display_name | Delin Zeng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Delin Zeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2099247833 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5508-377X |
| authorships[3].author.display_name | Long Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Long Cheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A1838981098 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5448-4387 |
| authorships[4].author.display_name | Tao Ma |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tao Ma |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.est.2025.119659 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | Bayesian deep learning for vehicle battery health prognostics: Incorporating behavioral perception and informative priors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T00:07:38.036990 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8998319506645203 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.est.2025.119659 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764865925 |
| best_oa_location.source.issn | 2352-152X, 2352-1538 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2352-152X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Energy Storage |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Energy Storage |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.est.2025.119659 |
| primary_location.id | doi:10.1016/j.est.2025.119659 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764865925 |
| primary_location.source.issn | 2352-152X, 2352-1538 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2352-152X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Energy Storage |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Energy Storage |
| primary_location.landing_page_url | https://doi.org/10.1016/j.est.2025.119659 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4394874973, https://openalex.org/W4388343094, https://openalex.org/W3206927167, https://openalex.org/W4392638205, https://openalex.org/W4205525415, https://openalex.org/W4399451162, https://openalex.org/W4389166011, https://openalex.org/W4392468222, https://openalex.org/W3119482039, https://openalex.org/W4393074087, https://openalex.org/W4390296093, https://openalex.org/W4391503224, https://openalex.org/W4393971598, https://openalex.org/W3118751056, https://openalex.org/W4387071870, https://openalex.org/W4399256092, https://openalex.org/W4391554292, https://openalex.org/W4399795712, https://openalex.org/W4387297881, https://openalex.org/W4309774299, https://openalex.org/W4389067320, https://openalex.org/W3181940825, https://openalex.org/W4390520633, https://openalex.org/W3183048323, https://openalex.org/W3161916718, https://openalex.org/W4285725541, https://openalex.org/W4226373360, https://openalex.org/W4320526741, https://openalex.org/W4292622317, https://openalex.org/W4226397853, https://openalex.org/W3135574545, https://openalex.org/W4223983006, https://openalex.org/W4379013179, https://openalex.org/W4399980616, https://openalex.org/W4399152857, https://openalex.org/W4385279296, https://openalex.org/W4398164319, https://openalex.org/W4408119537, https://openalex.org/W4322704170, https://openalex.org/W4311766317, https://openalex.org/W4409254739, https://openalex.org/W4320085913, https://openalex.org/W2111959010, https://openalex.org/W3045162186, https://openalex.org/W4394689626, https://openalex.org/W4327954986, https://openalex.org/W2225156818 |
| referenced_works_count | 47 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.71582074 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |