Bayesian Fill Volume Estimation Based on Point Level Sensor Signals Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2020.12.1852
In dry bulk and fluid processing, the composites are usually stored in hoppers, tanks, or other containers. Due to the economic advantages, binary point level sensors, which detect fill level exceeding, are widely used for process monitoring and control. In this paper, we propose different filters for estimating the probability distribution of the fill volume based on a time-variant measurement distribution and a stochastic physical model with white process noise. A filter based on the model prediction with separated measurement update and two Bayesian particle filters are proposed and compared with a simulated ground truth. The performance measures are the root-mean-square error, the precision of the 95 % and 75 % credible intervals, and the average value of the estimated probability density function at the simulated fill volumes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2020.12.1852
- OA Status
- diamond
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3155791903
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3155791903Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2020.12.1852Digital Object Identifier
- Title
-
Bayesian Fill Volume Estimation Based on Point Level Sensor SignalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Johannes Zumsande, Karl-Philipp Kortmann, Mark Wielitzka, Tobias OrtmaierList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2020.12.1852Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2020.12.1852Direct OA link when available
- Concepts
-
Mean squared error, Volume (thermodynamics), Particle filter, Probability density function, Noise (video), Statistics, Bayesian probability, Filter (signal processing), Mathematics, White noise, Computer science, Algorithm, Kalman filter, Artificial intelligence, Image (mathematics), Quantum mechanics, Physics, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3155791903 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| ids.mag | 3155791903 |
| ids.openalex | https://openalex.org/W3155791903 |
| fwci | 0.18213818 |
| type | article |
| title | Bayesian Fill Volume Estimation Based on Point Level Sensor Signals |
| biblio.issue | 2 |
| biblio.volume | 53 |
| biblio.last_page | 1267 |
| biblio.first_page | 1261 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.991599977016449 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T11220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.98089998960495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Water Systems and Optimization |
| topics[2].id | https://openalex.org/T12537 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Flow Measurement and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C139945424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5298504829406738 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[0].display_name | Mean squared error |
| concepts[1].id | https://openalex.org/C20556612 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4888257384300232 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[1].display_name | Volume (thermodynamics) |
| concepts[2].id | https://openalex.org/C52421305 |
| concepts[2].level | 3 |
| concepts[2].score | 0.487030565738678 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1151499 |
| concepts[2].display_name | Particle filter |
| concepts[3].id | https://openalex.org/C197055811 |
| concepts[3].level | 2 |
| concepts[3].score | 0.479233056306839 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207522 |
| concepts[3].display_name | Probability density function |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4785666763782501 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4596068859100342 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45724818110466003 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4556480050086975 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4369589388370514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C112633086 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4227820336818695 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q381287 |
| concepts[9].display_name | White noise |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4191988408565521 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4034215807914734 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C157286648 |
| concepts[12].level | 2 |
| concepts[12].score | 0.28968361020088196 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[12].display_name | Kalman filter |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.15022140741348267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/mean-squared-error |
| keywords[0].score | 0.5298504829406738 |
| keywords[0].display_name | Mean squared error |
| keywords[1].id | https://openalex.org/keywords/volume |
| keywords[1].score | 0.4888257384300232 |
| keywords[1].display_name | Volume (thermodynamics) |
| keywords[2].id | https://openalex.org/keywords/particle-filter |
| keywords[2].score | 0.487030565738678 |
| keywords[2].display_name | Particle filter |
| keywords[3].id | https://openalex.org/keywords/probability-density-function |
| keywords[3].score | 0.479233056306839 |
| keywords[3].display_name | Probability density function |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.4785666763782501 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.4596068859100342 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.45724818110466003 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.4556480050086975 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4369589388370514 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/white-noise |
| keywords[9].score | 0.4227820336818695 |
| keywords[9].display_name | White noise |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.4191988408565521 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4034215807914734 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/kalman-filter |
| keywords[12].score | 0.28968361020088196 |
| keywords[12].display_name | Kalman filter |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.15022140741348267 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2020.12.1852 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5046964061 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5807-7129 |
| authorships[0].author.display_name | Johannes Zumsande |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I114112103 |
| authorships[0].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Leibniz University Hannover |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Johannes Zumsande |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[1].author.id | https://openalex.org/A5030912644 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0472-3316 |
| authorships[1].author.display_name | Karl-Philipp Kortmann |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I114112103 |
| authorships[1].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Leibniz University Hannover |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Karl-Philipp Kortmann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[2].author.id | https://openalex.org/A5039880918 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mark Wielitzka |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I114112103 |
| authorships[2].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Leibniz University Hannover |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mark Wielitzka |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[3].author.id | https://openalex.org/A5028164919 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1644-3685 |
| authorships[3].author.display_name | Tobias Ortmaier |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I114112103 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I114112103 |
| authorships[3].institutions[0].ror | https://ror.org/0304hq317 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I114112103 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Leibniz University Hannover |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tobias Ortmaier |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Mechatronic Systems, Leibniz University Hannover, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Fill Volume Estimation Based on Point Level Sensor Signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.991599977016449 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2552050053, https://openalex.org/W2119158312, https://openalex.org/W2386767533, https://openalex.org/W1925706975, https://openalex.org/W2118906152, https://openalex.org/W2375845166, https://openalex.org/W2924541798, https://openalex.org/W1967526069, https://openalex.org/W1994564088 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ifacol.2020.12.1852 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| primary_location.id | doi:10.1016/j.ifacol.2020.12.1852 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2020.12.1852 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2129866986, https://openalex.org/W1981416331, https://openalex.org/W6670577119, https://openalex.org/W1966307629, https://openalex.org/W2609097752, https://openalex.org/W2077611006, https://openalex.org/W6738996271, https://openalex.org/W2098613108, https://openalex.org/W2187877333, https://openalex.org/W2783918566, https://openalex.org/W2094227853, https://openalex.org/W45437957, https://openalex.org/W2788276261, https://openalex.org/W2165591440, https://openalex.org/W2113592653, https://openalex.org/W2081014239, https://openalex.org/W2625499628, https://openalex.org/W3152507489, https://openalex.org/W1500474910, https://openalex.org/W3084257401, https://openalex.org/W1009437057, https://openalex.org/W2626354098 |
| referenced_works_count | 22 |
| abstract_inverted_index.% | 107, 110 |
| abstract_inverted_index.A | 70 |
| abstract_inverted_index.a | 57, 62, 91 |
| abstract_inverted_index.75 | 109 |
| abstract_inverted_index.95 | 106 |
| abstract_inverted_index.In | 0, 39 |
| abstract_inverted_index.at | 123 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.of | 51, 104, 117 |
| abstract_inverted_index.on | 56, 73 |
| abstract_inverted_index.or | 14 |
| abstract_inverted_index.to | 18 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.Due | 17 |
| abstract_inverted_index.The | 95 |
| abstract_inverted_index.and | 3, 37, 61, 81, 88, 108, 113 |
| abstract_inverted_index.are | 8, 31, 86, 98 |
| abstract_inverted_index.dry | 1 |
| abstract_inverted_index.for | 34, 46 |
| abstract_inverted_index.the | 6, 19, 48, 52, 74, 99, 102, 105, 114, 118, 124 |
| abstract_inverted_index.two | 82 |
| abstract_inverted_index.bulk | 2 |
| abstract_inverted_index.fill | 28, 53, 126 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.used | 33 |
| abstract_inverted_index.with | 66, 77, 90 |
| abstract_inverted_index.based | 55, 72 |
| abstract_inverted_index.fluid | 4 |
| abstract_inverted_index.level | 24, 29 |
| abstract_inverted_index.model | 65, 75 |
| abstract_inverted_index.other | 15 |
| abstract_inverted_index.point | 23 |
| abstract_inverted_index.value | 116 |
| abstract_inverted_index.which | 26 |
| abstract_inverted_index.white | 67 |
| abstract_inverted_index.binary | 22 |
| abstract_inverted_index.detect | 27 |
| abstract_inverted_index.error, | 101 |
| abstract_inverted_index.filter | 71 |
| abstract_inverted_index.ground | 93 |
| abstract_inverted_index.noise. | 69 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.stored | 10 |
| abstract_inverted_index.tanks, | 13 |
| abstract_inverted_index.truth. | 94 |
| abstract_inverted_index.update | 80 |
| abstract_inverted_index.volume | 54 |
| abstract_inverted_index.widely | 32 |
| abstract_inverted_index.average | 115 |
| abstract_inverted_index.density | 121 |
| abstract_inverted_index.filters | 45, 85 |
| abstract_inverted_index.process | 35, 68 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.usually | 9 |
| abstract_inverted_index.Bayesian | 83 |
| abstract_inverted_index.compared | 89 |
| abstract_inverted_index.control. | 38 |
| abstract_inverted_index.credible | 111 |
| abstract_inverted_index.economic | 20 |
| abstract_inverted_index.function | 122 |
| abstract_inverted_index.hoppers, | 12 |
| abstract_inverted_index.measures | 97 |
| abstract_inverted_index.particle | 84 |
| abstract_inverted_index.physical | 64 |
| abstract_inverted_index.proposed | 87 |
| abstract_inverted_index.sensors, | 25 |
| abstract_inverted_index.volumes. | 127 |
| abstract_inverted_index.different | 44 |
| abstract_inverted_index.estimated | 119 |
| abstract_inverted_index.precision | 103 |
| abstract_inverted_index.separated | 78 |
| abstract_inverted_index.simulated | 92, 125 |
| abstract_inverted_index.composites | 7 |
| abstract_inverted_index.estimating | 47 |
| abstract_inverted_index.exceeding, | 30 |
| abstract_inverted_index.intervals, | 112 |
| abstract_inverted_index.monitoring | 36 |
| abstract_inverted_index.prediction | 76 |
| abstract_inverted_index.stochastic | 63 |
| abstract_inverted_index.advantages, | 21 |
| abstract_inverted_index.containers. | 16 |
| abstract_inverted_index.measurement | 59, 79 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.probability | 49, 120 |
| abstract_inverted_index.processing, | 5 |
| abstract_inverted_index.distribution | 50, 60 |
| abstract_inverted_index.time-variant | 58 |
| abstract_inverted_index.root-mean-square | 100 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5046964061 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I114112103 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.63831144 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |