Bayesian Fully Convolutional Networks for Brain Image Registration Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/5528160
The purpose of medical image registration is to find geometric transformations that align two medical images so that the corresponding voxels on two images are spatially consistent. Nonrigid medical image registration is a key step in medical image processing, such as image comparison, data fusion, target recognition, and pathological change analysis. Existing registration methods only consider registration accuracy but largely neglect the uncertainty of registration results. In this work, a method based on the Bayesian fully convolutional neural network is proposed for nonrigid medical image registration. The proposed method can generate a geometric uncertainty map to calculate the uncertainty of registration results. This uncertainty can be interpreted as a confidence interval, which is essential for judging whether the source data are abnormal. Moreover, the proposed method introduces group normalization, which is conducive to the network convergence of the Bayesian neural network. Some representative learning-based image registration methods are compared with the proposed method on different image datasets. Experimental results show that the registration accuracy of the proposed method is better than that of the methods, and its antifolding performance is comparable to that of fast image registration and VoxelMorph. Furthermore, the proposed method can evaluate the uncertainty of registration results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/5528160
- https://downloads.hindawi.com/journals/jhe/2021/5528160.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 67
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3185462999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3185462999Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/5528160Digital Object Identifier
- Title
-
Bayesian Fully Convolutional Networks for Brain Image RegistrationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-26Full publication date if available
- Authors
-
Kunpeng Cui, Panpan Fu, Yinghao Li, Yusong LinList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/5528160Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jhe/2021/5528160.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jhe/2021/5528160.pdfDirect OA link when available
- Concepts
-
Image registration, Artificial intelligence, Computer science, Convolutional neural network, Computer vision, Voxel, Bayesian probability, Pattern recognition (psychology), Medical imaging, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1, 2022: 3, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3185462999 |
|---|---|
| doi | https://doi.org/10.1155/2021/5528160 |
| ids.doi | https://doi.org/10.1155/2021/5528160 |
| ids.mag | 3185462999 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34354807 |
| ids.openalex | https://openalex.org/W3185462999 |
| fwci | 0.81775583 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D001499 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Bayes Theorem |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D001921 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Brain |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008279 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Magnetic Resonance Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D035501 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Uncertainty |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001499 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Bayes Theorem |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D001921 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Brain |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008279 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Magnetic Resonance Imaging |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D016571 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Neural Networks, Computer |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D035501 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Uncertainty |
| type | article |
| title | Bayesian Fully Convolutional Networks for Brain Image Registration |
| awards[0].id | https://openalex.org/G300078354 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | F0001297 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6208674405 |
| awards[1].funder_id | https://openalex.org/F4320325625 |
| awards[1].display_name | |
| awards[1].funder_award_id | F0001297 |
| awards[1].funder_display_name | Education Department of Henan Province |
| awards[2].id | https://openalex.org/G7699791645 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 20XTZX06013 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G5929558525 |
| awards[3].funder_id | https://openalex.org/F4320325625 |
| awards[3].display_name | |
| awards[3].funder_award_id | 20XTZX05015 |
| awards[3].funder_display_name | Education Department of Henan Province |
| awards[4].id | https://openalex.org/G846941066 |
| awards[4].funder_id | https://openalex.org/F4320325625 |
| awards[4].display_name | |
| awards[4].funder_award_id | 20XTZX06013 |
| awards[4].funder_display_name | Education Department of Henan Province |
| awards[5].id | https://openalex.org/G7557950834 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 20XTZX05015 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| awards[6].id | https://openalex.org/G5771943080 |
| awards[6].funder_id | https://openalex.org/F4320321001 |
| awards[6].display_name | |
| awards[6].funder_award_id | 21A520042 |
| awards[6].funder_display_name | National Natural Science Foundation of China |
| awards[7].id | https://openalex.org/G6613409116 |
| awards[7].funder_id | https://openalex.org/F4320325625 |
| awards[7].display_name | |
| awards[7].funder_award_id | 81772009 |
| awards[7].funder_display_name | Education Department of Henan Province |
| awards[8].id | https://openalex.org/G3481501099 |
| awards[8].funder_id | https://openalex.org/F4320321001 |
| awards[8].display_name | |
| awards[8].funder_award_id | 182102310162 |
| awards[8].funder_display_name | National Natural Science Foundation of China |
| awards[9].id | https://openalex.org/G5812845878 |
| awards[9].funder_id | https://openalex.org/F4320325625 |
| awards[9].display_name | |
| awards[9].funder_award_id | 21A520042 |
| awards[9].funder_display_name | Education Department of Henan Province |
| awards[10].id | https://openalex.org/G1590284251 |
| awards[10].funder_id | https://openalex.org/F4320325625 |
| awards[10].display_name | |
| awards[10].funder_award_id | 182102310162 |
| awards[10].funder_display_name | Education Department of Henan Province |
| awards[11].id | https://openalex.org/G5639087772 |
| awards[11].funder_id | https://openalex.org/F4320321001 |
| awards[11].display_name | |
| awards[11].funder_award_id | 81772009 |
| awards[11].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 12 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320325625 |
| funders[1].ror | |
| funders[1].display_name | Education Department of Henan Province |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C166704113 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7869077920913696 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[0].display_name | Image registration |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7678046226501465 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7233932018280029 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5873618721961975 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5581386089324951 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C54170458 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5100020170211792 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[5].display_name | Voxel |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4575466513633728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45442959666252136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C31601959 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4208754897117615 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[8].display_name | Medical imaging |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3662211298942566 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/image-registration |
| keywords[0].score | 0.7869077920913696 |
| keywords[0].display_name | Image registration |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7678046226501465 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7233932018280029 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5873618721961975 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5581386089324951 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/voxel |
| keywords[5].score | 0.5100020170211792 |
| keywords[5].display_name | Voxel |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.4575466513633728 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.45442959666252136 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/medical-imaging |
| keywords[8].score | 0.4208754897117615 |
| keywords[8].display_name | Medical imaging |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.3662211298942566 |
| keywords[9].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1155/2021/5528160 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36625193 |
| locations[0].source.issn | 2040-2295, 2040-2309 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2040-2295 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Healthcare Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jhe/2021/5528160.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Healthcare Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/5528160 |
| locations[1].id | pmid:34354807 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of healthcare engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34354807 |
| locations[2].id | pmh:oai:doaj.org/article:4d91ab0c4d8a4aa1bc98b5d863a6ff14 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Healthcare Engineering, Vol 2021 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/4d91ab0c4d8a4aa1bc98b5d863a6ff14 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8331272 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Healthc Eng |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8331272 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5085784019 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kunpeng Cui |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[0].affiliations[1].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, Henan, China |
| authorships[0].institutions[0].id | https://openalex.org/I38877650 |
| authorships[0].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhengzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kunpeng Cui |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, Henan, China, School of Information Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China |
| authorships[1].author.id | https://openalex.org/A5062745811 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Panpan Fu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[1].institutions[0].id | https://openalex.org/I38877650 |
| authorships[1].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhengzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Panpan Fu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[2].author.id | https://openalex.org/A5100676456 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8830-4193 |
| authorships[2].author.display_name | Yinghao Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[2].affiliations[1].raw_affiliation_string | Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[2].institutions[0].id | https://openalex.org/I38877650 |
| authorships[2].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhengzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yinghao Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, Henan, China, School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[3].author.id | https://openalex.org/A5080806594 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2284-5763 |
| authorships[3].author.display_name | Yusong Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I38877650 |
| authorships[3].affiliations[0].raw_affiliation_string | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, Henan, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I38877650 |
| authorships[3].affiliations[1].raw_affiliation_string | Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I38877650 |
| authorships[3].affiliations[2].raw_affiliation_string | School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| authorships[3].institutions[0].id | https://openalex.org/I38877650 |
| authorships[3].institutions[0].ror | https://ror.org/04ypx8c21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I38877650 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhengzhou University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yusong Lin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, Henan, China, Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, Henan, China, School of Software, Zhengzhou University, Zhengzhou 450002, Henan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jhe/2021/5528160.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Fully Convolutional Networks for Brain Image Registration |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W3027020613, https://openalex.org/W2016533837, https://openalex.org/W3167885074, https://openalex.org/W2892386716, https://openalex.org/W2038239089, https://openalex.org/W4323287533, https://openalex.org/W2471562626, https://openalex.org/W2461863667, https://openalex.org/W2295804706, https://openalex.org/W3168515805 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2021/5528160 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36625193 |
| best_oa_location.source.issn | 2040-2295, 2040-2309 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2040-2295 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Healthcare Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2021/5528160.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Healthcare Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/5528160 |
| primary_location.id | doi:10.1155/2021/5528160 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36625193 |
| primary_location.source.issn | 2040-2295, 2040-2309 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2040-2295 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Healthcare Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jhe/2021/5528160.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Healthcare Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/5528160 |
| publication_date | 2021-07-26 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2147555557, https://openalex.org/W3028177366, https://openalex.org/W2029214174, https://openalex.org/W2068275821, https://openalex.org/W1972344168, https://openalex.org/W2152947391, https://openalex.org/W2066805957, https://openalex.org/W2889695311, https://openalex.org/W1990804363, https://openalex.org/W2065646479, https://openalex.org/W2068367031, https://openalex.org/W1972099553, https://openalex.org/W2138144081, https://openalex.org/W2097184811, https://openalex.org/W2135051036, https://openalex.org/W2119848633, https://openalex.org/W2113576511, https://openalex.org/W2522685779, https://openalex.org/W2118961645, https://openalex.org/W1511772490, https://openalex.org/W2146497006, https://openalex.org/W2102409432, https://openalex.org/W2150771764, https://openalex.org/W2135643201, https://openalex.org/W2138886071, https://openalex.org/W2064817422, https://openalex.org/W2045968916, https://openalex.org/W2135354879, https://openalex.org/W2162376077, https://openalex.org/W2141104431, https://openalex.org/W2147950119, https://openalex.org/W3036647317, https://openalex.org/W1970928383, https://openalex.org/W1041115305, https://openalex.org/W3010641641, https://openalex.org/W2898403737, https://openalex.org/W2914806156, https://openalex.org/W2891590469, https://openalex.org/W2886932427, https://openalex.org/W2344270078, https://openalex.org/W2891631795, https://openalex.org/W2922479016, https://openalex.org/W2979431346, https://openalex.org/W2979341335, https://openalex.org/W2990014955, https://openalex.org/W3048238399, https://openalex.org/W1677182931, https://openalex.org/W4238100585, https://openalex.org/W1567512734, https://openalex.org/W2600383743, https://openalex.org/W2953374819, https://openalex.org/W2139701068, https://openalex.org/W6764214684, https://openalex.org/W601603264, https://openalex.org/W2095705004, https://openalex.org/W2964059111, https://openalex.org/W2019587683, https://openalex.org/W2136145485, https://openalex.org/W2271840356, https://openalex.org/W2612690371, https://openalex.org/W2951266961, https://openalex.org/W3135126155, https://openalex.org/W3104164805, https://openalex.org/W582134693, https://openalex.org/W4288334580, https://openalex.org/W2022772882, https://openalex.org/W3097798494 |
| referenced_works_count | 67 |
| abstract_inverted_index.a | 32, 69, 91, 108 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.as | 40, 107 |
| abstract_inverted_index.be | 105 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 6, 31, 79, 112, 130, 168, 179 |
| abstract_inverted_index.of | 2, 63, 99, 136, 164, 172, 183, 197 |
| abstract_inverted_index.on | 21, 72, 153 |
| abstract_inverted_index.so | 16 |
| abstract_inverted_index.to | 7, 95, 132, 181 |
| abstract_inverted_index.The | 0, 86 |
| abstract_inverted_index.and | 47, 175, 187 |
| abstract_inverted_index.are | 24, 120, 147 |
| abstract_inverted_index.but | 58 |
| abstract_inverted_index.can | 89, 104, 193 |
| abstract_inverted_index.for | 81, 114 |
| abstract_inverted_index.its | 176 |
| abstract_inverted_index.key | 33 |
| abstract_inverted_index.map | 94 |
| abstract_inverted_index.the | 18, 61, 73, 97, 117, 123, 133, 137, 150, 161, 165, 173, 190, 195 |
| abstract_inverted_index.two | 13, 22 |
| abstract_inverted_index.Some | 141 |
| abstract_inverted_index.This | 102 |
| abstract_inverted_index.data | 43, 119 |
| abstract_inverted_index.fast | 184 |
| abstract_inverted_index.find | 8 |
| abstract_inverted_index.only | 54 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.step | 34 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.than | 170 |
| abstract_inverted_index.that | 11, 17, 160, 171, 182 |
| abstract_inverted_index.this | 67 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.align | 12 |
| abstract_inverted_index.based | 71 |
| abstract_inverted_index.fully | 75 |
| abstract_inverted_index.group | 127 |
| abstract_inverted_index.image | 4, 29, 37, 41, 84, 144, 155, 185 |
| abstract_inverted_index.which | 111, 129 |
| abstract_inverted_index.work, | 68 |
| abstract_inverted_index.better | 169 |
| abstract_inverted_index.change | 49 |
| abstract_inverted_index.images | 15, 23 |
| abstract_inverted_index.method | 70, 88, 125, 152, 167, 192 |
| abstract_inverted_index.neural | 77, 139 |
| abstract_inverted_index.source | 118 |
| abstract_inverted_index.target | 45 |
| abstract_inverted_index.voxels | 20 |
| abstract_inverted_index.fusion, | 44 |
| abstract_inverted_index.judging | 115 |
| abstract_inverted_index.largely | 59 |
| abstract_inverted_index.medical | 3, 14, 28, 36, 83 |
| abstract_inverted_index.methods | 53, 146 |
| abstract_inverted_index.neglect | 60 |
| abstract_inverted_index.network | 78, 134 |
| abstract_inverted_index.purpose | 1 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.whether | 116 |
| abstract_inverted_index.Bayesian | 74, 138 |
| abstract_inverted_index.Existing | 51 |
| abstract_inverted_index.Nonrigid | 27 |
| abstract_inverted_index.accuracy | 57, 163 |
| abstract_inverted_index.compared | 148 |
| abstract_inverted_index.consider | 55 |
| abstract_inverted_index.evaluate | 194 |
| abstract_inverted_index.generate | 90 |
| abstract_inverted_index.methods, | 174 |
| abstract_inverted_index.network. | 140 |
| abstract_inverted_index.nonrigid | 82 |
| abstract_inverted_index.proposed | 80, 87, 124, 151, 166, 191 |
| abstract_inverted_index.results. | 65, 101, 199 |
| abstract_inverted_index.Moreover, | 122 |
| abstract_inverted_index.abnormal. | 121 |
| abstract_inverted_index.analysis. | 50 |
| abstract_inverted_index.calculate | 96 |
| abstract_inverted_index.conducive | 131 |
| abstract_inverted_index.datasets. | 156 |
| abstract_inverted_index.different | 154 |
| abstract_inverted_index.essential | 113 |
| abstract_inverted_index.geometric | 9, 92 |
| abstract_inverted_index.interval, | 110 |
| abstract_inverted_index.spatially | 25 |
| abstract_inverted_index.comparable | 180 |
| abstract_inverted_index.confidence | 109 |
| abstract_inverted_index.introduces | 126 |
| abstract_inverted_index.VoxelMorph. | 188 |
| abstract_inverted_index.antifolding | 177 |
| abstract_inverted_index.comparison, | 42 |
| abstract_inverted_index.consistent. | 26 |
| abstract_inverted_index.convergence | 135 |
| abstract_inverted_index.interpreted | 106 |
| abstract_inverted_index.performance | 178 |
| abstract_inverted_index.processing, | 38 |
| abstract_inverted_index.uncertainty | 62, 93, 98, 103, 196 |
| abstract_inverted_index.Experimental | 157 |
| abstract_inverted_index.Furthermore, | 189 |
| abstract_inverted_index.pathological | 48 |
| abstract_inverted_index.recognition, | 46 |
| abstract_inverted_index.registration | 5, 30, 52, 56, 64, 100, 145, 162, 186, 198 |
| abstract_inverted_index.convolutional | 76 |
| abstract_inverted_index.corresponding | 19 |
| abstract_inverted_index.registration. | 85 |
| abstract_inverted_index.learning-based | 143 |
| abstract_inverted_index.normalization, | 128 |
| abstract_inverted_index.representative | 142 |
| abstract_inverted_index.transformations | 10 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100676456, https://openalex.org/A5080806594 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I38877650 |
| citation_normalized_percentile.value | 0.74535863 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |