Bayesian inference for optimal dynamic treatment regimes in practice Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.15281
In this work, we examine recently developed methods for Bayesian inference of optimal dynamic treatment regimes (DTRs). DTRs are a set of treatment decision rules aimed at tailoring patient care to patient-specific characteristics, thereby falling within the realm of precision medicine. In this field, researchers seek to tailor therapy with the intention of improving health outcomes; therefore, they are most interested in identifying optimal DTRs. Recent work has developed Bayesian methods for identifying optimal DTRs in a family indexed by $ψ$ via Bayesian dynamic marginal structural models (MSMs) (Rodriguez Duque et al., 2022a); we review the proposed estimation procedure and illustrate its use via the new BayesDTR R package. Although methods in (Rodriguez Duque et al., 2022a) can estimate optimal DTRs well, they may lead to biased estimators when the model for the expected outcome if everyone in a population were to follow a given treatment strategy, known as a value function, is misspecified or when a grid search for the optimum is employed. We describe recent work that uses a Gaussian process ($GP$) prior on the value function as a means to robustly identify optimal DTRs (Rodriguez Duque et al., 2022b). We demonstrate how a $GP$ approach may be implemented with the BayesDTR package and contrast it with other value-search approaches to identifying optimal DTRs. We use data from an HIV therapeutic trial in order to illustrate a standard analysis with these methods, using both the original observed trial data and an additional simulated component to showcase a longitudinal (two-stage DTR) analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.15281
- https://arxiv.org/pdf/2303.15281
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361194307
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361194307Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.15281Digital Object Identifier
- Title
-
Bayesian inference for optimal dynamic treatment regimes in practiceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-27Full publication date if available
- Authors
-
Daniel Rodriguez Duque, Erica E. M. Moodie, David A. StephensList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.15281Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.15281Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.15281Direct OA link when available
- Concepts
-
Bayesian probability, Computer science, Inference, Bayesian inference, Machine learning, Estimator, Population, Artificial intelligence, Mathematics, Statistics, Medicine, Environmental healthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361194307 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.15281 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.15281 |
| ids.openalex | https://openalex.org/W4361194307 |
| fwci | |
| type | preprint |
| title | Bayesian inference for optimal dynamic treatment regimes in practice |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11235 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods in Clinical Trials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107673813 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5798289179801941 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[0].display_name | Bayesian probability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5588727593421936 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5198134183883667 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C160234255 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4701329171657562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[3].display_name | Bayesian inference |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4606386125087738 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45549142360687256 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C2908647359 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4530465602874756 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[6].display_name | Population |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37737685441970825 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18275076150894165 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16821131110191345 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08991840481758118 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C99454951 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[11].display_name | Environmental health |
| keywords[0].id | https://openalex.org/keywords/bayesian-probability |
| keywords[0].score | 0.5798289179801941 |
| keywords[0].display_name | Bayesian probability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5588727593421936 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.5198134183883667 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/bayesian-inference |
| keywords[3].score | 0.4701329171657562 |
| keywords[3].display_name | Bayesian inference |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4606386125087738 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.45549142360687256 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/population |
| keywords[6].score | 0.4530465602874756 |
| keywords[6].display_name | Population |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.37737685441970825 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.18275076150894165 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.16821131110191345 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.08991840481758118 |
| keywords[10].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.15281 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.15281 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.15281 |
| locations[1].id | doi:10.48550/arxiv.2303.15281 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.15281 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5046264268 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7270-2787 |
| authorships[0].author.display_name | Daniel Rodriguez Duque |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duque, Daniel Rodriguez |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5048550846 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7225-3977 |
| authorships[1].author.display_name | Erica E. M. Moodie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moodie, Erica E. M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085069223 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9811-7140 |
| authorships[2].author.display_name | David A. Stephens |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Stephens, David A. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.15281 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian inference for optimal dynamic treatment regimes in practice |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W2372267530, https://openalex.org/W2969189870, https://openalex.org/W2965643117, https://openalex.org/W4303857162, https://openalex.org/W2407375987, https://openalex.org/W2505726097, https://openalex.org/W2010643158, https://openalex.org/W3049691116, https://openalex.org/W2106867672, https://openalex.org/W3081214562 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.15281 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.15281 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.15281 |
| primary_location.id | pmh:oai:arXiv.org:2303.15281 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.15281 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.15281 |
| publication_date | 2023-03-27 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.R | 107 |
| abstract_inverted_index.a | 19, 76, 138, 143, 149, 156, 170, 180, 195, 228, 248 |
| abstract_inverted_index.In | 0, 41 |
| abstract_inverted_index.We | 164, 192, 216 |
| abstract_inverted_index.an | 220, 242 |
| abstract_inverted_index.as | 148, 179 |
| abstract_inverted_index.at | 26 |
| abstract_inverted_index.be | 199 |
| abstract_inverted_index.by | 79 |
| abstract_inverted_index.et | 90, 114, 189 |
| abstract_inverted_index.if | 135 |
| abstract_inverted_index.in | 61, 75, 111, 137, 224 |
| abstract_inverted_index.is | 152, 162 |
| abstract_inverted_index.it | 207 |
| abstract_inverted_index.of | 11, 21, 38, 52 |
| abstract_inverted_index.on | 175 |
| abstract_inverted_index.or | 154 |
| abstract_inverted_index.to | 30, 46, 125, 141, 182, 212, 226, 246 |
| abstract_inverted_index.we | 3, 93 |
| abstract_inverted_index.HIV | 221 |
| abstract_inverted_index.and | 99, 205, 241 |
| abstract_inverted_index.are | 18, 58 |
| abstract_inverted_index.can | 117 |
| abstract_inverted_index.for | 8, 71, 131, 159 |
| abstract_inverted_index.has | 67 |
| abstract_inverted_index.how | 194 |
| abstract_inverted_index.its | 101 |
| abstract_inverted_index.may | 123, 198 |
| abstract_inverted_index.new | 105 |
| abstract_inverted_index.set | 20 |
| abstract_inverted_index.the | 36, 50, 95, 104, 129, 132, 160, 176, 202, 236 |
| abstract_inverted_index.use | 102, 217 |
| abstract_inverted_index.via | 81, 103 |
| abstract_inverted_index.$GP$ | 196 |
| abstract_inverted_index.$ψ$ | 80 |
| abstract_inverted_index.DTR) | 251 |
| abstract_inverted_index.DTRs | 17, 74, 120, 186 |
| abstract_inverted_index.al., | 91, 115, 190 |
| abstract_inverted_index.both | 235 |
| abstract_inverted_index.care | 29 |
| abstract_inverted_index.data | 218, 240 |
| abstract_inverted_index.from | 219 |
| abstract_inverted_index.grid | 157 |
| abstract_inverted_index.lead | 124 |
| abstract_inverted_index.most | 59 |
| abstract_inverted_index.seek | 45 |
| abstract_inverted_index.that | 168 |
| abstract_inverted_index.they | 57, 122 |
| abstract_inverted_index.this | 1, 42 |
| abstract_inverted_index.uses | 169 |
| abstract_inverted_index.were | 140 |
| abstract_inverted_index.when | 128, 155 |
| abstract_inverted_index.with | 49, 201, 208, 231 |
| abstract_inverted_index.work | 66, 167 |
| abstract_inverted_index.DTRs. | 64, 215 |
| abstract_inverted_index.Duque | 89, 113, 188 |
| abstract_inverted_index.aimed | 25 |
| abstract_inverted_index.given | 144 |
| abstract_inverted_index.known | 147 |
| abstract_inverted_index.means | 181 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.order | 225 |
| abstract_inverted_index.other | 209 |
| abstract_inverted_index.prior | 174 |
| abstract_inverted_index.realm | 37 |
| abstract_inverted_index.rules | 24 |
| abstract_inverted_index.these | 232 |
| abstract_inverted_index.trial | 223, 239 |
| abstract_inverted_index.using | 234 |
| abstract_inverted_index.value | 150, 177 |
| abstract_inverted_index.well, | 121 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.($GP$) | 173 |
| abstract_inverted_index.(MSMs) | 87 |
| abstract_inverted_index.2022a) | 116 |
| abstract_inverted_index.Recent | 65 |
| abstract_inverted_index.biased | 126 |
| abstract_inverted_index.family | 77 |
| abstract_inverted_index.field, | 43 |
| abstract_inverted_index.follow | 142 |
| abstract_inverted_index.health | 54 |
| abstract_inverted_index.models | 86 |
| abstract_inverted_index.recent | 166 |
| abstract_inverted_index.review | 94 |
| abstract_inverted_index.search | 158 |
| abstract_inverted_index.tailor | 47 |
| abstract_inverted_index.within | 35 |
| abstract_inverted_index.(DTRs). | 16 |
| abstract_inverted_index.2022a); | 92 |
| abstract_inverted_index.2022b). | 191 |
| abstract_inverted_index.dynamic | 13, 83 |
| abstract_inverted_index.examine | 4 |
| abstract_inverted_index.falling | 34 |
| abstract_inverted_index.indexed | 78 |
| abstract_inverted_index.methods | 7, 70, 110 |
| abstract_inverted_index.optimal | 12, 63, 73, 119, 185, 214 |
| abstract_inverted_index.optimum | 161 |
| abstract_inverted_index.outcome | 134 |
| abstract_inverted_index.package | 204 |
| abstract_inverted_index.patient | 28 |
| abstract_inverted_index.process | 172 |
| abstract_inverted_index.regimes | 15 |
| abstract_inverted_index.therapy | 48 |
| abstract_inverted_index.thereby | 33 |
| abstract_inverted_index.Although | 109 |
| abstract_inverted_index.BayesDTR | 106, 203 |
| abstract_inverted_index.Bayesian | 9, 69, 82 |
| abstract_inverted_index.Gaussian | 171 |
| abstract_inverted_index.analysis | 230 |
| abstract_inverted_index.approach | 197 |
| abstract_inverted_index.contrast | 206 |
| abstract_inverted_index.decision | 23 |
| abstract_inverted_index.describe | 165 |
| abstract_inverted_index.estimate | 118 |
| abstract_inverted_index.everyone | 136 |
| abstract_inverted_index.expected | 133 |
| abstract_inverted_index.function | 178 |
| abstract_inverted_index.identify | 184 |
| abstract_inverted_index.marginal | 84 |
| abstract_inverted_index.methods, | 233 |
| abstract_inverted_index.observed | 238 |
| abstract_inverted_index.original | 237 |
| abstract_inverted_index.package. | 108 |
| abstract_inverted_index.proposed | 96 |
| abstract_inverted_index.recently | 5 |
| abstract_inverted_index.robustly | 183 |
| abstract_inverted_index.showcase | 247 |
| abstract_inverted_index.standard | 229 |
| abstract_inverted_index.analysis. | 252 |
| abstract_inverted_index.component | 245 |
| abstract_inverted_index.developed | 6, 68 |
| abstract_inverted_index.employed. | 163 |
| abstract_inverted_index.function, | 151 |
| abstract_inverted_index.improving | 53 |
| abstract_inverted_index.inference | 10 |
| abstract_inverted_index.intention | 51 |
| abstract_inverted_index.medicine. | 40 |
| abstract_inverted_index.outcomes; | 55 |
| abstract_inverted_index.precision | 39 |
| abstract_inverted_index.procedure | 98 |
| abstract_inverted_index.simulated | 244 |
| abstract_inverted_index.strategy, | 146 |
| abstract_inverted_index.tailoring | 27 |
| abstract_inverted_index.treatment | 14, 22, 145 |
| abstract_inverted_index.(Rodriguez | 88, 112, 187 |
| abstract_inverted_index.(two-stage | 250 |
| abstract_inverted_index.additional | 243 |
| abstract_inverted_index.approaches | 211 |
| abstract_inverted_index.estimation | 97 |
| abstract_inverted_index.estimators | 127 |
| abstract_inverted_index.illustrate | 100, 227 |
| abstract_inverted_index.interested | 60 |
| abstract_inverted_index.population | 139 |
| abstract_inverted_index.structural | 85 |
| abstract_inverted_index.therefore, | 56 |
| abstract_inverted_index.demonstrate | 193 |
| abstract_inverted_index.identifying | 62, 72, 213 |
| abstract_inverted_index.implemented | 200 |
| abstract_inverted_index.researchers | 44 |
| abstract_inverted_index.therapeutic | 222 |
| abstract_inverted_index.longitudinal | 249 |
| abstract_inverted_index.misspecified | 153 |
| abstract_inverted_index.value-search | 210 |
| abstract_inverted_index.characteristics, | 32 |
| abstract_inverted_index.patient-specific | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |