Bayesian Input Compression for Edge Intelligence in Industry 4.0 Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14173416
In Industry 4.0 environments, edge intelligence plays a critical role in enabling real-time analytics and autonomous decision-making by integrating artificial intelligence (AI) with edge computing. However, deploying deep neural networks (DNNs) on resource-constrained edge devices remains challenging due to limited computational capacity and strict latency requirements. While conventional methods primarily focus on structural model compression, we propose an adaptive input-centric approach that reduces computational overhead by pruning redundant features prior to inference. A Bayesian network is employed to quantify the influence of each input feature on the model output, enabling efficient input reduction without modifying the model architecture. A bidirectional chain structure facilitates robust feature ranking, and an automated algorithm optimizes input selection to meet predefined constraints on model accuracy and size. Experimental results demonstrate that the proposed method significantly reduces memory usage and computation cost while maintaining competitive performance, making it highly suitable for real-time edge intelligence in industrial settings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14173416
- https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575
- OA Status
- gold
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413796109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413796109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14173416Digital Object Identifier
- Title
-
Bayesian Input Compression for Edge Intelligence in Industry 4.0Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-27Full publication date if available
- Authors
-
Handuo Zhang, Jun Guo, Xiaoxiao Wang, Bin ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14173416Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Edge computing, Pruning, Edge device, Analytics, Enhanced Data Rates for GSM Evolution, Machine learning, Bayesian network, Feature selection, Computation, Artificial neural network, Inference, Data mining, Cloud computing, Algorithm, Operating system, Biology, AgronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413796109 |
|---|---|
| doi | https://doi.org/10.3390/electronics14173416 |
| ids.doi | https://doi.org/10.3390/electronics14173416 |
| ids.openalex | https://openalex.org/W4413796109 |
| fwci | 0.0 |
| type | article |
| title | Bayesian Input Compression for Edge Intelligence in Industry 4.0 |
| biblio.issue | 17 |
| biblio.volume | 14 |
| biblio.last_page | 3416 |
| biblio.first_page | 3416 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9955000281333923 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9936000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8127336502075195 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.571983277797699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2778456923 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5220468044281006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[2].display_name | Edge computing |
| concepts[3].id | https://openalex.org/C108010975 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5010485649108887 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[3].display_name | Pruning |
| concepts[4].id | https://openalex.org/C138236772 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4850265383720398 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[4].display_name | Edge device |
| concepts[5].id | https://openalex.org/C79158427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48192787170410156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[5].display_name | Analytics |
| concepts[6].id | https://openalex.org/C162307627 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4650617241859436 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[6].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4539886713027954 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33724603 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45383408665657043 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[8].display_name | Bayesian network |
| concepts[9].id | https://openalex.org/C148483581 |
| concepts[9].level | 2 |
| concepts[9].score | 0.434085488319397 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[9].display_name | Feature selection |
| concepts[10].id | https://openalex.org/C45374587 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4161053001880646 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[10].display_name | Computation |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.413188099861145 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C2776214188 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41079461574554443 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[12].display_name | Inference |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3615388870239258 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C79974875 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3110147714614868 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[14].display_name | Cloud computing |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14213499426841736 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C6557445 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[18].display_name | Agronomy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8127336502075195 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.571983277797699 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/edge-computing |
| keywords[2].score | 0.5220468044281006 |
| keywords[2].display_name | Edge computing |
| keywords[3].id | https://openalex.org/keywords/pruning |
| keywords[3].score | 0.5010485649108887 |
| keywords[3].display_name | Pruning |
| keywords[4].id | https://openalex.org/keywords/edge-device |
| keywords[4].score | 0.4850265383720398 |
| keywords[4].display_name | Edge device |
| keywords[5].id | https://openalex.org/keywords/analytics |
| keywords[5].score | 0.48192787170410156 |
| keywords[5].display_name | Analytics |
| keywords[6].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[6].score | 0.4650617241859436 |
| keywords[6].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4539886713027954 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/bayesian-network |
| keywords[8].score | 0.45383408665657043 |
| keywords[8].display_name | Bayesian network |
| keywords[9].id | https://openalex.org/keywords/feature-selection |
| keywords[9].score | 0.434085488319397 |
| keywords[9].display_name | Feature selection |
| keywords[10].id | https://openalex.org/keywords/computation |
| keywords[10].score | 0.4161053001880646 |
| keywords[10].display_name | Computation |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.413188099861145 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/inference |
| keywords[12].score | 0.41079461574554443 |
| keywords[12].display_name | Inference |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3615388870239258 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/cloud-computing |
| keywords[14].score | 0.3110147714614868 |
| keywords[14].display_name | Cloud computing |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.14213499426841736 |
| keywords[15].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3390/electronics14173416 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14173416 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012185871 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-3917-909X |
| authorships[0].author.display_name | Handuo Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Handuo Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[1].author.id | https://openalex.org/A5100445470 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9045-1339 |
| authorships[1].author.display_name | Jun Guo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | Software College, Northeastern University, Shenyang 110169, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jun Guo |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Software College, Northeastern University, Shenyang 110169, China |
| authorships[2].author.id | https://openalex.org/A5100355060 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3996-7900 |
| authorships[2].author.display_name | Xiaoxiao Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[0].raw_affiliation_string | Software College, Northeastern University, Shenyang 110169, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoxiao Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Software College, Northeastern University, Shenyang 110169, China |
| authorships[3].author.id | https://openalex.org/A5100392843 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4879-0211 |
| authorships[3].author.display_name | Bin Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | Software College, Northeastern University, Shenyang 110169, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bin Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Software College, Northeastern University, Shenyang 110169, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Input Compression for Edge Intelligence in Industry 4.0 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9955000281333923 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4322761281, https://openalex.org/W4238233472, https://openalex.org/W3111395152, https://openalex.org/W4313526662, https://openalex.org/W4313463218, https://openalex.org/W3106131444, https://openalex.org/W3216099748, https://openalex.org/W4205963435, https://openalex.org/W4312996489, https://openalex.org/W3214037210 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14173416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14173416 |
| primary_location.id | doi:10.3390/electronics14173416 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/14/17/3416/pdf?version=1756298575 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14173416 |
| publication_date | 2025-08-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4396877941, https://openalex.org/W4388079247, https://openalex.org/W3004543888, https://openalex.org/W4390822412, https://openalex.org/W3034797615, https://openalex.org/W3033428961, https://openalex.org/W4402137675, https://openalex.org/W4205952419, https://openalex.org/W4402654353, https://openalex.org/W2963125010, https://openalex.org/W2883780447, https://openalex.org/W2962772649, https://openalex.org/W4386158963, https://openalex.org/W4394008356, https://openalex.org/W2989658562, https://openalex.org/W3004633656, https://openalex.org/W3007902335, https://openalex.org/W4406754702, https://openalex.org/W4402352824, https://openalex.org/W3201412947, https://openalex.org/W4308028076, https://openalex.org/W3043734689, https://openalex.org/W3007897323, https://openalex.org/W4386518671, https://openalex.org/W2169466806, https://openalex.org/W2135099885, https://openalex.org/W2114623221, https://openalex.org/W4390604386, https://openalex.org/W3111967092, https://openalex.org/W3181129449, https://openalex.org/W2809251854, https://openalex.org/W4312796067, https://openalex.org/W3010919326, https://openalex.org/W3195252999, https://openalex.org/W2919115771, https://openalex.org/W4226340826, https://openalex.org/W4392152832, https://openalex.org/W2123649031, https://openalex.org/W2104636679, https://openalex.org/W2963000224, https://openalex.org/W2963981420, https://openalex.org/W3159460870, https://openalex.org/W3105131457, https://openalex.org/W4387799560, https://openalex.org/W2134797427, https://openalex.org/W4383604976 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 72, 98 |
| abstract_inverted_index.a | 7 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 57, 107 |
| abstract_inverted_index.by | 17, 65 |
| abstract_inverted_index.in | 10, 148 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.it | 141 |
| abstract_inverted_index.of | 81 |
| abstract_inverted_index.on | 31, 51, 85, 117 |
| abstract_inverted_index.to | 38, 70, 77, 113 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.4.0 | 2 |
| abstract_inverted_index.and | 14, 42, 106, 120, 133 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 144 |
| abstract_inverted_index.the | 79, 86, 95, 126 |
| abstract_inverted_index.(AI) | 21 |
| abstract_inverted_index.cost | 135 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.edge | 4, 23, 33, 146 |
| abstract_inverted_index.meet | 114 |
| abstract_inverted_index.role | 9 |
| abstract_inverted_index.that | 61, 125 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.While | 46 |
| abstract_inverted_index.chain | 100 |
| abstract_inverted_index.focus | 50 |
| abstract_inverted_index.input | 83, 91, 111 |
| abstract_inverted_index.model | 53, 87, 96, 118 |
| abstract_inverted_index.plays | 6 |
| abstract_inverted_index.prior | 69 |
| abstract_inverted_index.size. | 121 |
| abstract_inverted_index.usage | 132 |
| abstract_inverted_index.while | 136 |
| abstract_inverted_index.(DNNs) | 30 |
| abstract_inverted_index.highly | 142 |
| abstract_inverted_index.making | 140 |
| abstract_inverted_index.memory | 131 |
| abstract_inverted_index.method | 128 |
| abstract_inverted_index.neural | 28 |
| abstract_inverted_index.robust | 103 |
| abstract_inverted_index.strict | 43 |
| abstract_inverted_index.devices | 34 |
| abstract_inverted_index.feature | 84, 104 |
| abstract_inverted_index.latency | 44 |
| abstract_inverted_index.limited | 39 |
| abstract_inverted_index.methods | 48 |
| abstract_inverted_index.network | 74 |
| abstract_inverted_index.output, | 88 |
| abstract_inverted_index.propose | 56 |
| abstract_inverted_index.pruning | 66 |
| abstract_inverted_index.reduces | 62, 130 |
| abstract_inverted_index.remains | 35 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.without | 93 |
| abstract_inverted_index.Bayesian | 73 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.Industry | 1 |
| abstract_inverted_index.accuracy | 119 |
| abstract_inverted_index.adaptive | 58 |
| abstract_inverted_index.approach | 60 |
| abstract_inverted_index.capacity | 41 |
| abstract_inverted_index.critical | 8 |
| abstract_inverted_index.employed | 76 |
| abstract_inverted_index.enabling | 11, 89 |
| abstract_inverted_index.features | 68 |
| abstract_inverted_index.networks | 29 |
| abstract_inverted_index.overhead | 64 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.quantify | 78 |
| abstract_inverted_index.ranking, | 105 |
| abstract_inverted_index.suitable | 143 |
| abstract_inverted_index.algorithm | 109 |
| abstract_inverted_index.analytics | 13 |
| abstract_inverted_index.automated | 108 |
| abstract_inverted_index.deploying | 26 |
| abstract_inverted_index.efficient | 90 |
| abstract_inverted_index.influence | 80 |
| abstract_inverted_index.modifying | 94 |
| abstract_inverted_index.optimizes | 110 |
| abstract_inverted_index.primarily | 49 |
| abstract_inverted_index.real-time | 12, 145 |
| abstract_inverted_index.reduction | 92 |
| abstract_inverted_index.redundant | 67 |
| abstract_inverted_index.selection | 112 |
| abstract_inverted_index.settings. | 150 |
| abstract_inverted_index.structure | 101 |
| abstract_inverted_index.artificial | 19 |
| abstract_inverted_index.autonomous | 15 |
| abstract_inverted_index.computing. | 24 |
| abstract_inverted_index.industrial | 149 |
| abstract_inverted_index.inference. | 71 |
| abstract_inverted_index.predefined | 115 |
| abstract_inverted_index.structural | 52 |
| abstract_inverted_index.challenging | 36 |
| abstract_inverted_index.competitive | 138 |
| abstract_inverted_index.computation | 134 |
| abstract_inverted_index.constraints | 116 |
| abstract_inverted_index.demonstrate | 124 |
| abstract_inverted_index.facilitates | 102 |
| abstract_inverted_index.integrating | 18 |
| abstract_inverted_index.maintaining | 137 |
| abstract_inverted_index.Experimental | 122 |
| abstract_inverted_index.compression, | 54 |
| abstract_inverted_index.conventional | 47 |
| abstract_inverted_index.intelligence | 5, 20, 147 |
| abstract_inverted_index.performance, | 139 |
| abstract_inverted_index.architecture. | 97 |
| abstract_inverted_index.bidirectional | 99 |
| abstract_inverted_index.computational | 40, 63 |
| abstract_inverted_index.environments, | 3 |
| abstract_inverted_index.input-centric | 59 |
| abstract_inverted_index.requirements. | 45 |
| abstract_inverted_index.significantly | 129 |
| abstract_inverted_index.decision-making | 16 |
| abstract_inverted_index.resource-constrained | 32 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100445470 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I9224756 |
| citation_normalized_percentile.value | 0.47947331 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |