Bayesian Learning of Occupancy Grids Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/tits.2020.3019813
Occupancy grids encode for hot spots on a map that is represented by a two dimensional grid of disjoint cells. The problem is to recursively update the probability that each cell in the grid is occupied, based on a sequence of sensor measurements from a moving platform. In this paper, we provide a new Bayesian framework for generating these probabilities that does not assume statistical independence between the occupancy state of grid cells. This approach is made analytically tractable through the use of binary asymmetric channel models that capture the errors associated with observing the occupancy state of a grid cell. Binary-valued measurement vectors are the thresholded output of a sensor in a radar, sonar, or other sensory system. We compare the performance of the proposed framework to that of the classical formulation for occupancy grids. The results show that the proposed framework identifies occupancy grids with lower false alarm and miss detection rates, and requires fewer observations of the surrounding area, to generate an accurate estimate of occupancy probabilities when compared to conventional formulations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/tits.2020.3019813
- OA Status
- green
- References
- 27
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2990112790
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2990112790Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tits.2020.3019813Digital Object Identifier
- Title
-
Bayesian Learning of Occupancy GridsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-09Full publication date if available
- Authors
-
Christopher Robbiano, Edwin K. P. Chong, M.R. Azimi-Sadjadi, Louis L. Scharf, Ali PezeshkiList of authors in order
- Landing page
-
https://doi.org/10.1109/tits.2020.3019813Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1911.07915Direct OA link when available
- Concepts
-
Occupancy, Occupancy grid mapping, Computer science, Grid, Bayesian probability, Disjoint sets, Binary number, Posterior probability, Independence (probability theory), Algorithm, False alarm, Artificial intelligence, Mathematics, Statistics, Engineering, Architectural engineering, Robot, Arithmetic, Mobile robot, Geometry, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2990112790 |
|---|---|
| doi | https://doi.org/10.1109/tits.2020.3019813 |
| ids.doi | https://doi.org/10.1109/tits.2020.3019813 |
| ids.mag | 2990112790 |
| ids.openalex | https://openalex.org/W2990112790 |
| fwci | 0.0 |
| type | preprint |
| title | Bayesian Learning of Occupancy Grids |
| biblio.issue | 2 |
| biblio.volume | 23 |
| biblio.last_page | 1084 |
| biblio.first_page | 1073 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T12879 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed Sensor Networks and Detection Algorithms |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160331591 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9090749621391296 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7075743 |
| concepts[0].display_name | Occupancy |
| concepts[1].id | https://openalex.org/C57077369 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8438878059387207 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7075747 |
| concepts[1].display_name | Occupancy grid mapping |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6352319121360779 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C187691185 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5954666137695312 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[3].display_name | Grid |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5701885223388672 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C45340560 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5485877394676208 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q215382 |
| concepts[5].display_name | Disjoint sets |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49215835332870483 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C57830394 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45546114444732666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[7].display_name | Posterior probability |
| concepts[8].id | https://openalex.org/C35651441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43933385610580444 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q625303 |
| concepts[8].display_name | Independence (probability theory) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42572975158691406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C2776836416 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41130876541137695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1364844 |
| concepts[10].display_name | False alarm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.28636467456817627 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20764872431755066 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19477689266204834 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10941985249519348 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C170154142 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[15].display_name | Architectural engineering |
| concepts[16].id | https://openalex.org/C90509273 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[16].display_name | Robot |
| concepts[17].id | https://openalex.org/C94375191 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[17].display_name | Arithmetic |
| concepts[18].id | https://openalex.org/C19966478 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[18].display_name | Mobile robot |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C114614502 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[20].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/occupancy |
| keywords[0].score | 0.9090749621391296 |
| keywords[0].display_name | Occupancy |
| keywords[1].id | https://openalex.org/keywords/occupancy-grid-mapping |
| keywords[1].score | 0.8438878059387207 |
| keywords[1].display_name | Occupancy grid mapping |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6352319121360779 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/grid |
| keywords[3].score | 0.5954666137695312 |
| keywords[3].display_name | Grid |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.5701885223388672 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/disjoint-sets |
| keywords[5].score | 0.5485877394676208 |
| keywords[5].display_name | Disjoint sets |
| keywords[6].id | https://openalex.org/keywords/binary-number |
| keywords[6].score | 0.49215835332870483 |
| keywords[6].display_name | Binary number |
| keywords[7].id | https://openalex.org/keywords/posterior-probability |
| keywords[7].score | 0.45546114444732666 |
| keywords[7].display_name | Posterior probability |
| keywords[8].id | https://openalex.org/keywords/independence |
| keywords[8].score | 0.43933385610580444 |
| keywords[8].display_name | Independence (probability theory) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.42572975158691406 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/false-alarm |
| keywords[10].score | 0.41130876541137695 |
| keywords[10].display_name | False alarm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.28636467456817627 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.20764872431755066 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.19477689266204834 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.10941985249519348 |
| keywords[14].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/tits.2020.3019813 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S144771191 |
| locations[0].source.issn | 1524-9050, 1558-0016 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1524-9050 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Intelligent Transportation Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Intelligent Transportation Systems |
| locations[0].landing_page_url | https://doi.org/10.1109/tits.2020.3019813 |
| locations[1].id | pmh:oai:arXiv.org:1911.07915 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1911.07915 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1911.07915 |
| locations[2].id | mag:2990112790 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/1911.07915 |
| locations[3].id | doi:10.48550/arxiv.1911.07915 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1911.07915 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5022614295 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2758-5435 |
| authorships[0].author.display_name | Christopher Robbiano |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[0].affiliations[0].raw_affiliation_string | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA (e-mail: [email protected])] |
| authorships[0].institutions[0].id | https://openalex.org/I92446798 |
| authorships[0].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Colorado State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christopher Robbiano |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA (e-mail: [email protected])] |
| authorships[1].author.id | https://openalex.org/A5070385137 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7622-4815 |
| authorships[1].author.display_name | Edwin K. P. Chong |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[1].affiliations[0].raw_affiliation_string | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| authorships[1].institutions[0].id | https://openalex.org/I92446798 |
| authorships[1].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Colorado State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Edwin K.P. Chong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| authorships[2].author.id | https://openalex.org/A5017501434 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1644-9833 |
| authorships[2].author.display_name | M.R. Azimi-Sadjadi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[2].affiliations[0].raw_affiliation_string | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| authorships[2].institutions[0].id | https://openalex.org/I92446798 |
| authorships[2].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Colorado State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mahmood R. Azimi-Sadjadi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| authorships[3].author.id | https://openalex.org/A5080469112 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1764-9335 |
| authorships[3].author.display_name | Louis L. Scharf |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[3].affiliations[0].raw_affiliation_string | [Mathematics and Statistics Departments, Colorado State University, Fort Collins, CO 80521 USA.] |
| authorships[3].institutions[0].id | https://openalex.org/I92446798 |
| authorships[3].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Colorado State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Louis L. Scharf |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [Mathematics and Statistics Departments, Colorado State University, Fort Collins, CO 80521 USA.] |
| authorships[4].author.id | https://openalex.org/A5028995727 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7142-5685 |
| authorships[4].author.display_name | Ali Pezeshki |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[4].affiliations[0].raw_affiliation_string | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| authorships[4].institutions[0].id | https://openalex.org/I92446798 |
| authorships[4].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Colorado State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ali Pezeshki |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | [Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80524 USA.] |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1911.07915 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Learning of Occupancy Grids |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W2963896465, https://openalex.org/W2075026170, https://openalex.org/W1977189000, https://openalex.org/W2968766113, https://openalex.org/W2361025071, https://openalex.org/W2590408257, https://openalex.org/W2245943671, https://openalex.org/W3098085399, https://openalex.org/W2168137830, https://openalex.org/W1991752086, https://openalex.org/W2981178296, https://openalex.org/W2212202518, https://openalex.org/W635632299, https://openalex.org/W2967794992, https://openalex.org/W2157182050, https://openalex.org/W3205679795, https://openalex.org/W2950441013, https://openalex.org/W2886996591, https://openalex.org/W3127232562, https://openalex.org/W2968355674 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1911.07915 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1911.07915 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1911.07915 |
| primary_location.id | doi:10.1109/tits.2020.3019813 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S144771191 |
| primary_location.source.issn | 1524-9050, 1558-0016 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1524-9050 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Intelligent Transportation Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Intelligent Transportation Systems |
| primary_location.landing_page_url | https://doi.org/10.1109/tits.2020.3019813 |
| publication_date | 2020-09-09 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1977189000, https://openalex.org/W2588908148, https://openalex.org/W2154912862, https://openalex.org/W1976511700, https://openalex.org/W2125220577, https://openalex.org/W1528979467, https://openalex.org/W1987721971, https://openalex.org/W2146950091, https://openalex.org/W1999050017, https://openalex.org/W1611476298, https://openalex.org/W1991752086, https://openalex.org/W6634211753, https://openalex.org/W2889143552, https://openalex.org/W1977225473, https://openalex.org/W2154418813, https://openalex.org/W4231002530, https://openalex.org/W2564666437, https://openalex.org/W2144625707, https://openalex.org/W6680041779, https://openalex.org/W2125341398, https://openalex.org/W1973176871, https://openalex.org/W2099111195, https://openalex.org/W3184766140, https://openalex.org/W2988049800, https://openalex.org/W2296039540, https://openalex.org/W1571912086, https://openalex.org/W2135554559 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 7, 13, 38, 44, 52, 98, 109, 112 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.an | 164 |
| abstract_inverted_index.by | 12 |
| abstract_inverted_index.in | 31, 111 |
| abstract_inverted_index.is | 10, 22, 34, 75 |
| abstract_inverted_index.of | 17, 40, 70, 82, 97, 108, 123, 129, 158, 167 |
| abstract_inverted_index.on | 6, 37 |
| abstract_inverted_index.or | 115 |
| abstract_inverted_index.to | 23, 127, 162, 172 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.The | 20, 136 |
| abstract_inverted_index.and | 150, 154 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.for | 3, 56, 133 |
| abstract_inverted_index.hot | 4 |
| abstract_inverted_index.map | 8 |
| abstract_inverted_index.new | 53 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.the | 26, 32, 67, 80, 89, 94, 105, 121, 124, 130, 140, 159 |
| abstract_inverted_index.two | 14 |
| abstract_inverted_index.use | 81 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.cell | 30 |
| abstract_inverted_index.does | 61 |
| abstract_inverted_index.each | 29 |
| abstract_inverted_index.from | 43 |
| abstract_inverted_index.grid | 16, 33, 71, 99 |
| abstract_inverted_index.made | 76 |
| abstract_inverted_index.miss | 151 |
| abstract_inverted_index.show | 138 |
| abstract_inverted_index.that | 9, 28, 60, 87, 128, 139 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.when | 170 |
| abstract_inverted_index.with | 92, 146 |
| abstract_inverted_index.alarm | 149 |
| abstract_inverted_index.area, | 161 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.cell. | 100 |
| abstract_inverted_index.false | 148 |
| abstract_inverted_index.fewer | 156 |
| abstract_inverted_index.grids | 1, 145 |
| abstract_inverted_index.lower | 147 |
| abstract_inverted_index.other | 116 |
| abstract_inverted_index.spots | 5 |
| abstract_inverted_index.state | 69, 96 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.assume | 63 |
| abstract_inverted_index.binary | 83 |
| abstract_inverted_index.cells. | 19, 72 |
| abstract_inverted_index.encode | 2 |
| abstract_inverted_index.errors | 90 |
| abstract_inverted_index.grids. | 135 |
| abstract_inverted_index.models | 86 |
| abstract_inverted_index.moving | 45 |
| abstract_inverted_index.output | 107 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.radar, | 113 |
| abstract_inverted_index.rates, | 153 |
| abstract_inverted_index.sensor | 41, 110 |
| abstract_inverted_index.sonar, | 114 |
| abstract_inverted_index.update | 25 |
| abstract_inverted_index.between | 66 |
| abstract_inverted_index.capture | 88 |
| abstract_inverted_index.channel | 85 |
| abstract_inverted_index.compare | 120 |
| abstract_inverted_index.problem | 21 |
| abstract_inverted_index.provide | 51 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.sensory | 117 |
| abstract_inverted_index.system. | 118 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.vectors | 103 |
| abstract_inverted_index.Bayesian | 54 |
| abstract_inverted_index.accurate | 165 |
| abstract_inverted_index.approach | 74 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.disjoint | 18 |
| abstract_inverted_index.estimate | 166 |
| abstract_inverted_index.generate | 163 |
| abstract_inverted_index.proposed | 125, 141 |
| abstract_inverted_index.requires | 155 |
| abstract_inverted_index.sequence | 39 |
| abstract_inverted_index.Occupancy | 0 |
| abstract_inverted_index.classical | 131 |
| abstract_inverted_index.detection | 152 |
| abstract_inverted_index.framework | 55, 126, 142 |
| abstract_inverted_index.observing | 93 |
| abstract_inverted_index.occupancy | 68, 95, 134, 144, 168 |
| abstract_inverted_index.occupied, | 35 |
| abstract_inverted_index.platform. | 46 |
| abstract_inverted_index.tractable | 78 |
| abstract_inverted_index.associated | 91 |
| abstract_inverted_index.asymmetric | 84 |
| abstract_inverted_index.generating | 57 |
| abstract_inverted_index.identifies | 143 |
| abstract_inverted_index.dimensional | 15 |
| abstract_inverted_index.formulation | 132 |
| abstract_inverted_index.measurement | 102 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.probability | 27 |
| abstract_inverted_index.recursively | 24 |
| abstract_inverted_index.represented | 11 |
| abstract_inverted_index.statistical | 64 |
| abstract_inverted_index.surrounding | 160 |
| abstract_inverted_index.thresholded | 106 |
| abstract_inverted_index.analytically | 77 |
| abstract_inverted_index.conventional | 173 |
| abstract_inverted_index.independence | 65 |
| abstract_inverted_index.measurements | 42 |
| abstract_inverted_index.observations | 157 |
| abstract_inverted_index.Binary-valued | 101 |
| abstract_inverted_index.formulations. | 174 |
| abstract_inverted_index.probabilities | 59, 169 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.00805381 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |