Bayesian modelling and quantification of Raman spectroscopy Article Swipe
YOU?
·
· 2018
· Open Access
·
Raman spectroscopy can be used to identify molecules such as DNA by the characteristic scattering of light from a laser. It is sensitive at very low concentrations and can accurately quantify the amount of a given molecule in a sample. The presence of a large, nonuniform background presents a major challenge to analysis of these spectra. To overcome this challenge, we introduce a sequential Monte Carlo (SMC) algorithm to separate each observed spectrum into a series of peaks plus a smoothly-varying baseline, corrupted by additive white noise. The peaks are modelled as Lorentzian, Gaussian, or pseudo-Voigt functions, while the baseline is estimated using a penalised cubic spline. This latent continuous representation accounts for differences in resolution between measurements. The posterior distribution can be incrementally updated as more data becomes available, resulting in a scalable algorithm that is robust to local maxima. By incorporating this representation in a Bayesian hierarchical regression model, we can quantify the relationship between molecular concentration and peak intensity, thereby providing an improved estimate of the limit of detection, which is of major importance to analytical chemistry.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://strathprints.strath.ac.uk/view/author/524445.html>
- OA Status
- green
- Cited By
- 2
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2963960216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2963960216Canonical identifier for this work in OpenAlex
- Title
-
Bayesian modelling and quantification of Raman spectroscopyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-24Full publication date if available
- Authors
-
Matthew T. Moores, Kirsten Gracie, Jake Carson, Karen Faulds, Duncan Graham, Mark GirolamiList of authors in order
- Landing page
-
https://strathprints.strath.ac.uk/view/author/524445.html>Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10044/1/72571Direct OA link when available
- Concepts
-
Bayesian probability, Monte Carlo method, Statistical physics, Gaussian, Algorithm, Computer science, Biological system, Mathematics, Physics, Chemistry, Artificial intelligence, Statistics, Computational chemistry, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2019: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2963960216 |
|---|---|
| doi | |
| ids.mag | 2963960216 |
| ids.openalex | https://openalex.org/W2963960216 |
| fwci | 0.17273675 |
| type | article |
| title | Bayesian modelling and quantification of Raman spectroscopy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T11443 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Advanced Statistical Process Monitoring |
| topics[2].id | https://openalex.org/T11324 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107673813 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5565758943557739 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[0].display_name | Bayesian probability |
| concepts[1].id | https://openalex.org/C19499675 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5135457515716553 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[1].display_name | Monte Carlo method |
| concepts[2].id | https://openalex.org/C121864883 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4963539242744446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[2].display_name | Statistical physics |
| concepts[3].id | https://openalex.org/C163716315 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4478142261505127 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[3].display_name | Gaussian |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4369218647480011 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.36997509002685547 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C186060115 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3484528660774231 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[6].display_name | Biological system |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3106255829334259 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.29126232862472534 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2721552848815918 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.26296088099479675 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2553977370262146 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C147597530 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10307395458221436 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[12].display_name | Computational chemistry |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/bayesian-probability |
| keywords[0].score | 0.5565758943557739 |
| keywords[0].display_name | Bayesian probability |
| keywords[1].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[1].score | 0.5135457515716553 |
| keywords[1].display_name | Monte Carlo method |
| keywords[2].id | https://openalex.org/keywords/statistical-physics |
| keywords[2].score | 0.4963539242744446 |
| keywords[2].display_name | Statistical physics |
| keywords[3].id | https://openalex.org/keywords/gaussian |
| keywords[3].score | 0.4478142261505127 |
| keywords[3].display_name | Gaussian |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4369218647480011 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.36997509002685547 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/biological-system |
| keywords[6].score | 0.3484528660774231 |
| keywords[6].display_name | Biological system |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3106255829334259 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.29126232862472534 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.2721552848815918 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.26296088099479675 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2553977370262146 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/computational-chemistry |
| keywords[12].score | 0.10307395458221436 |
| keywords[12].display_name | Computational chemistry |
| language | en |
| locations[0].id | pmh:oai:strathprints.strath.ac.uk:63329 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306402226 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Strathprints: The University of Strathclyde institutional repository (University of Strathclyde) |
| locations[0].source.host_organization | https://openalex.org/I181647926 |
| locations[0].source.host_organization_name | University of Strathclyde |
| locations[0].source.host_organization_lineage | https://openalex.org/I181647926 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | PeerReviewed |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://strathprints.strath.ac.uk/view/author/524445.html> |
| locations[1].id | pmh:oai:spiral.imperial.ac.uk:10044/1/72571 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401396 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Spiral (Imperial College London) |
| locations[1].source.host_organization | https://openalex.org/I47508984 |
| locations[1].source.host_organization_name | Imperial College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I47508984 |
| locations[1].license | |
| locations[1].pdf_url | http://hdl.handle.net/10044/1/72571 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Working Paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10044/1/72571 |
| locations[2].id | pmh:oai:generic.eprints.org:1185338 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400250 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Scientific Repository (Petra Christian University) |
| locations[2].source.host_organization | https://openalex.org/I114202661 |
| locations[2].source.host_organization_name | Petra Christian University |
| locations[2].source.host_organization_lineage | https://openalex.org/I114202661 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://publications.eng.cam.ac.uk/1185338/ |
| locations[3].id | mag:2963960216 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S112778392 |
| locations[3].source.issn | 1932-6157, 1941-7330 |
| locations[3].source.type | journal |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | 1932-6157 |
| locations[3].source.is_core | True |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | The Annals of Applied Statistics |
| locations[3].source.host_organization | https://openalex.org/P4310319881 |
| locations[3].source.host_organization_name | Institute of Mathematical Statistics |
| locations[3].source.host_organization_lineage | https://openalex.org/P4310319881 |
| locations[3].source.host_organization_lineage_names | Institute of Mathematical Statistics |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | The Annals of Applied Statistics |
| locations[3].landing_page_url | https://pureportal.strath.ac.uk/en/publications/bayesian-modelling-and-quantification-of-raman-spectroscopy |
| authorships[0].author.id | https://openalex.org/A5083303772 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4531-3572 |
| authorships[0].author.display_name | Matthew T. Moores |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Warwick |
| authorships[0].institutions[0].id | https://openalex.org/I39555362 |
| authorships[0].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Warwick |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew Moores |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Warwick |
| authorships[1].author.id | https://openalex.org/A5013159716 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3149-3357 |
| authorships[1].author.display_name | Kirsten Gracie |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I385545280 |
| authorships[1].affiliations[0].raw_affiliation_string | Pure And Applied Chemistry |
| authorships[1].institutions[0].id | https://openalex.org/I385545280 |
| authorships[1].institutions[0].ror | https://ror.org/03ne2zw20 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I385545280 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | International Union of Pure and Applied Chemistry |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kirsten Gracie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Pure And Applied Chemistry |
| authorships[2].author.id | https://openalex.org/A5046063144 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7896-0971 |
| authorships[2].author.display_name | Jake Carson |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jake Carson |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018552299 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5567-7399 |
| authorships[3].author.display_name | Karen Faulds |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I385545280 |
| authorships[3].affiliations[0].raw_affiliation_string | Pure And Applied Chemistry |
| authorships[3].institutions[0].id | https://openalex.org/I385545280 |
| authorships[3].institutions[0].ror | https://ror.org/03ne2zw20 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I385545280 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | International Union of Pure and Applied Chemistry |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Karen Faulds |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pure And Applied Chemistry |
| authorships[4].author.id | https://openalex.org/A5030731778 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6079-2105 |
| authorships[4].author.display_name | Duncan Graham |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I385545280 |
| authorships[4].affiliations[0].raw_affiliation_string | Pure And Applied Chemistry |
| authorships[4].institutions[0].id | https://openalex.org/I385545280 |
| authorships[4].institutions[0].ror | https://ror.org/03ne2zw20 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I385545280 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | International Union of Pure and Applied Chemistry |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Duncan Graham |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Pure And Applied Chemistry |
| authorships[5].author.id | https://openalex.org/A5045384249 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3008-253X |
| authorships[5].author.display_name | Mark Girolami |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47508984 |
| authorships[5].affiliations[0].raw_affiliation_string | Imperial College London |
| authorships[5].institutions[0].id | https://openalex.org/I47508984 |
| authorships[5].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Imperial College London |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mark Girolami |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Imperial College London |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10044/1/72571 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian modelling and quantification of Raman spectroscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2406494515, https://openalex.org/W2181996864, https://openalex.org/W2276992956, https://openalex.org/W1998451099, https://openalex.org/W2019737081, https://openalex.org/W2166513508, https://openalex.org/W2952443200, https://openalex.org/W2502485374, https://openalex.org/W2745382967, https://openalex.org/W2023219873, https://openalex.org/W3182113803, https://openalex.org/W3034198232, https://openalex.org/W2166581432, https://openalex.org/W2138533472, https://openalex.org/W2807880429, https://openalex.org/W1989508642, https://openalex.org/W2950789730, https://openalex.org/W3184384447, https://openalex.org/W3138461041, https://openalex.org/W1771876445 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:spiral.imperial.ac.uk:10044/1/72571 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401396 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Spiral (Imperial College London) |
| best_oa_location.source.host_organization | https://openalex.org/I47508984 |
| best_oa_location.source.host_organization_name | Imperial College London |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I47508984 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/10044/1/72571 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Working Paper |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10044/1/72571 |
| primary_location.id | pmh:oai:strathprints.strath.ac.uk:63329 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306402226 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Strathprints: The University of Strathclyde institutional repository (University of Strathclyde) |
| primary_location.source.host_organization | https://openalex.org/I181647926 |
| primary_location.source.host_organization_name | University of Strathclyde |
| primary_location.source.host_organization_lineage | https://openalex.org/I181647926 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | PeerReviewed |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://strathprints.strath.ac.uk/view/author/524445.html> |
| publication_date | 2018-01-24 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 34, 38, 43, 48, 62, 74, 79, 103, 132, 146 |
| abstract_inverted_index.By | 141 |
| abstract_inverted_index.It | 20 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.an | 164 |
| abstract_inverted_index.as | 9, 91, 125 |
| abstract_inverted_index.at | 23 |
| abstract_inverted_index.be | 3, 122 |
| abstract_inverted_index.by | 11, 83 |
| abstract_inverted_index.in | 37, 114, 131, 145 |
| abstract_inverted_index.is | 21, 100, 136, 173 |
| abstract_inverted_index.of | 15, 33, 42, 53, 76, 167, 170, 174 |
| abstract_inverted_index.or | 94 |
| abstract_inverted_index.to | 5, 51, 68, 138, 177 |
| abstract_inverted_index.we | 60, 151 |
| abstract_inverted_index.DNA | 10 |
| abstract_inverted_index.The | 40, 87, 118 |
| abstract_inverted_index.and | 27, 159 |
| abstract_inverted_index.are | 89 |
| abstract_inverted_index.can | 2, 28, 121, 152 |
| abstract_inverted_index.for | 112 |
| abstract_inverted_index.low | 25 |
| abstract_inverted_index.the | 12, 31, 98, 154, 168 |
| abstract_inverted_index.This | 107 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.each | 70 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.into | 73 |
| abstract_inverted_index.more | 126 |
| abstract_inverted_index.peak | 160 |
| abstract_inverted_index.plus | 78 |
| abstract_inverted_index.such | 8 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.this | 58, 143 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.very | 24 |
| abstract_inverted_index.(SMC) | 66 |
| abstract_inverted_index.Carlo | 65 |
| abstract_inverted_index.Monte | 64 |
| abstract_inverted_index.Raman | 0 |
| abstract_inverted_index.cubic | 105 |
| abstract_inverted_index.given | 35 |
| abstract_inverted_index.light | 16 |
| abstract_inverted_index.limit | 169 |
| abstract_inverted_index.local | 139 |
| abstract_inverted_index.major | 49, 175 |
| abstract_inverted_index.peaks | 77, 88 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.which | 172 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.white | 85 |
| abstract_inverted_index.amount | 32 |
| abstract_inverted_index.large, | 44 |
| abstract_inverted_index.laser. | 19 |
| abstract_inverted_index.latent | 108 |
| abstract_inverted_index.model, | 150 |
| abstract_inverted_index.noise. | 86 |
| abstract_inverted_index.robust | 137 |
| abstract_inverted_index.series | 75 |
| abstract_inverted_index.becomes | 128 |
| abstract_inverted_index.between | 116, 156 |
| abstract_inverted_index.maxima. | 140 |
| abstract_inverted_index.sample. | 39 |
| abstract_inverted_index.spline. | 106 |
| abstract_inverted_index.thereby | 162 |
| abstract_inverted_index.updated | 124 |
| abstract_inverted_index.Bayesian | 147 |
| abstract_inverted_index.accounts | 111 |
| abstract_inverted_index.additive | 84 |
| abstract_inverted_index.analysis | 52 |
| abstract_inverted_index.baseline | 99 |
| abstract_inverted_index.estimate | 166 |
| abstract_inverted_index.identify | 6 |
| abstract_inverted_index.improved | 165 |
| abstract_inverted_index.modelled | 90 |
| abstract_inverted_index.molecule | 36 |
| abstract_inverted_index.observed | 71 |
| abstract_inverted_index.overcome | 57 |
| abstract_inverted_index.presence | 41 |
| abstract_inverted_index.presents | 47 |
| abstract_inverted_index.quantify | 30, 153 |
| abstract_inverted_index.scalable | 133 |
| abstract_inverted_index.separate | 69 |
| abstract_inverted_index.spectra. | 55 |
| abstract_inverted_index.spectrum | 72 |
| abstract_inverted_index.Gaussian, | 93 |
| abstract_inverted_index.algorithm | 67, 134 |
| abstract_inverted_index.baseline, | 81 |
| abstract_inverted_index.challenge | 50 |
| abstract_inverted_index.corrupted | 82 |
| abstract_inverted_index.estimated | 101 |
| abstract_inverted_index.introduce | 61 |
| abstract_inverted_index.molecular | 157 |
| abstract_inverted_index.molecules | 7 |
| abstract_inverted_index.penalised | 104 |
| abstract_inverted_index.posterior | 119 |
| abstract_inverted_index.providing | 163 |
| abstract_inverted_index.resulting | 130 |
| abstract_inverted_index.sensitive | 22 |
| abstract_inverted_index.accurately | 29 |
| abstract_inverted_index.analytical | 178 |
| abstract_inverted_index.available, | 129 |
| abstract_inverted_index.background | 46 |
| abstract_inverted_index.challenge, | 59 |
| abstract_inverted_index.chemistry. | 179 |
| abstract_inverted_index.continuous | 109 |
| abstract_inverted_index.detection, | 171 |
| abstract_inverted_index.functions, | 96 |
| abstract_inverted_index.importance | 176 |
| abstract_inverted_index.intensity, | 161 |
| abstract_inverted_index.nonuniform | 45 |
| abstract_inverted_index.regression | 149 |
| abstract_inverted_index.resolution | 115 |
| abstract_inverted_index.scattering | 14 |
| abstract_inverted_index.sequential | 63 |
| abstract_inverted_index.Lorentzian, | 92 |
| abstract_inverted_index.differences | 113 |
| abstract_inverted_index.distribution | 120 |
| abstract_inverted_index.hierarchical | 148 |
| abstract_inverted_index.pseudo-Voigt | 95 |
| abstract_inverted_index.relationship | 155 |
| abstract_inverted_index.spectroscopy | 1 |
| abstract_inverted_index.concentration | 158 |
| abstract_inverted_index.incorporating | 142 |
| abstract_inverted_index.incrementally | 123 |
| abstract_inverted_index.measurements. | 117 |
| abstract_inverted_index.characteristic | 13 |
| abstract_inverted_index.concentrations | 26 |
| abstract_inverted_index.representation | 110, 144 |
| abstract_inverted_index.smoothly-varying | 80 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.49541284 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |