Bayesian modelling of species-environment relationships for partially observed data. Article Swipe
Characterising how species respond to its environment is of central interest in ecology. Species-environment relationships (SERs) are studied in many topics, for instance, in community ecology, in species distribution modelling, and to guide conservation or management actions. Statistical models fitting species distribution data (e.g., presence/absence or counts) to environmental data (e.g., temperature) are often used to estimate SERs. Standard models assume that data is representative of the SER. However, data can represent only a partial description of the SER. In this work, we investigated the effects on modelling SERs of three kinds of partially observed data:1) Partially observed response data, e.g., species sampled occurrences may only represent a partial observation of the occupancy status due to missing species present (i.e., imperfect detection).2) Partially observed environmental data, e.g., environmental descriptors may represent averaged conditions at a coarser spatial scale than the one at which SER is studied (i.e., area-to-point spatial misalignment).3) Partially observed relationship, e.g., the gradient of environmental conditions that describe the SER are not entirely surveyed (i.e., truncated gradient).Hierarchical Bayesian Models, allowing multi-species inferences and disentangling ecological from observational processes, have been developed and tested in three case studies, each involving a particular type of partially observed data.In the first case study, we emphasized that even a robust sampling design that involves multiple sampling replicates and detection techniques can lead to species detection probabilities lower than one in an insect community. We then advocated for the use of Multi-Species Occupancy Models to account for imperfect detection in insect studies. In the second case study, we showed how using area-to-point misaligned covariate can flatten SERs estimated by generalized linear models and how fitting a Berkson error model can lower the bias. In the third case study, we developed a hierarchical model that explicitly estimates optimum shifts. By constraining estimated SERs to concave shapes (following ecological theory), the new model improved estimates relative to past methods, especially in the case of truncated gradients.
Related Topics
- Type
- dissertation
- Language
- en
- Landing Page
- http://www.theses.fr/2022PAUU3023/document
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392285999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392285999Canonical identifier for this work in OpenAlex
- Title
-
Bayesian modelling of species-environment relationships for partially observed data.Work title
- Type
-
dissertationOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-10Full publication date if available
- Authors
-
Bastien MourguiartList of authors in order
- Landing page
-
https://www.theses.fr/2022PAUU3023/documentPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.theses.fr/2022PAUU3023/documentDirect OA link when available
- Concepts
-
Bayesian probability, Computer science, Econometrics, Data mining, Geography, Data science, Statistics, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392285999 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4392285999 |
| fwci | |
| type | dissertation |
| title | Bayesian modelling of species-environment relationships for partially observed data. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10895 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9135000109672546 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2302 |
| topics[0].subfield.display_name | Ecological Modeling |
| topics[0].display_name | Species Distribution and Climate Change |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107673813 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5986548066139221 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[0].display_name | Bayesian probability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.39497488737106323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.37294647097587585 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3655535578727722 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3627811372280121 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35922056436538696 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32530033588409424 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2538702189922333 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24140536785125732 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/bayesian-probability |
| keywords[0].score | 0.5986548066139221 |
| keywords[0].display_name | Bayesian probability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.39497488737106323 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.37294647097587585 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.3655535578727722 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.3627811372280121 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.35922056436538696 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.32530033588409424 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.2538702189922333 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.24140536785125732 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:2022PAUU3023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400553 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Munich Personal RePEc Archive (Ludwig Maximilian University of Munich) |
| locations[0].source.host_organization | https://openalex.org/I8204097 |
| locations[0].source.host_organization_name | Ludwig-Maximilians-Universität München |
| locations[0].source.host_organization_lineage | https://openalex.org/I8204097 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Electronic Thesis or Dissertation |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://www.theses.fr/2022PAUU3023/document |
| locations[1].id | pmh:oai:HAL:tel-04085564v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Theses |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | General Mathematics [math.GM]. Université de Pau et des Pays de l'Adour, 2022. English. ⟨NNT : 2022PAUU3023⟩ |
| locations[1].landing_page_url | https://theses.hal.science/tel-04085564 |
| authorships[0].author.id | https://openalex.org/A5018062029 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0974-3949 |
| authorships[0].author.display_name | Bastien Mourguiart |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mourguiart, Bastien |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.theses.fr/2022PAUU3023/document |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian modelling of species-environment relationships for partially observed data. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10895 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9135000109672546 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2302 |
| primary_topic.subfield.display_name | Ecological Modeling |
| primary_topic.display_name | Species Distribution and Climate Change |
| related_works | https://openalex.org/W1922851888, https://openalex.org/W2406961220, https://openalex.org/W2046260256, https://openalex.org/W4232468313, https://openalex.org/W3214485701, https://openalex.org/W3162882601, https://openalex.org/W4242249046, https://openalex.org/W4240106746, https://openalex.org/W4230369419, https://openalex.org/W2991725409 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:2022PAUU3023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400553 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Munich Personal RePEc Archive (Ludwig Maximilian University of Munich) |
| best_oa_location.source.host_organization | https://openalex.org/I8204097 |
| best_oa_location.source.host_organization_name | Ludwig-Maximilians-Universität München |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I8204097 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Electronic Thesis or Dissertation |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://www.theses.fr/2022PAUU3023/document |
| primary_location.id | pmh:2022PAUU3023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400553 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Munich Personal RePEc Archive (Ludwig Maximilian University of Munich) |
| primary_location.source.host_organization | https://openalex.org/I8204097 |
| primary_location.source.host_organization_name | Ludwig-Maximilians-Universität München |
| primary_location.source.host_organization_lineage | https://openalex.org/I8204097 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Electronic Thesis or Dissertation |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://www.theses.fr/2022PAUU3023/document |
| publication_date | 2022-11-10 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73, 107, 134, 192, 207, 273, 288 |
| abstract_inverted_index.By | 296 |
| abstract_inverted_index.In | 79, 250, 281 |
| abstract_inverted_index.We | 232 |
| abstract_inverted_index.an | 229 |
| abstract_inverted_index.at | 133, 141 |
| abstract_inverted_index.by | 266 |
| abstract_inverted_index.in | 11, 18, 23, 26, 186, 228, 247, 316 |
| abstract_inverted_index.is | 7, 63, 144 |
| abstract_inverted_index.of | 8, 65, 76, 89, 92, 110, 156, 195, 238, 319 |
| abstract_inverted_index.on | 86 |
| abstract_inverted_index.or | 34, 45 |
| abstract_inverted_index.to | 4, 31, 47, 55, 115, 221, 242, 300, 312 |
| abstract_inverted_index.we | 82, 203, 255, 286 |
| abstract_inverted_index.SER | 143, 162 |
| abstract_inverted_index.and | 30, 175, 184, 216, 270 |
| abstract_inverted_index.are | 16, 52, 163 |
| abstract_inverted_index.can | 70, 219, 262, 277 |
| abstract_inverted_index.due | 114 |
| abstract_inverted_index.for | 21, 235, 244 |
| abstract_inverted_index.how | 1, 257, 271 |
| abstract_inverted_index.its | 5 |
| abstract_inverted_index.may | 104, 129 |
| abstract_inverted_index.new | 307 |
| abstract_inverted_index.not | 164 |
| abstract_inverted_index.one | 140, 227 |
| abstract_inverted_index.the | 66, 77, 84, 111, 139, 154, 161, 199, 236, 251, 279, 282, 306, 317 |
| abstract_inverted_index.use | 237 |
| abstract_inverted_index.SER. | 67, 78 |
| abstract_inverted_index.SERs | 88, 264, 299 |
| abstract_inverted_index.been | 182 |
| abstract_inverted_index.case | 188, 201, 253, 284, 318 |
| abstract_inverted_index.data | 42, 49, 62, 69 |
| abstract_inverted_index.each | 190 |
| abstract_inverted_index.even | 206 |
| abstract_inverted_index.from | 178 |
| abstract_inverted_index.have | 181 |
| abstract_inverted_index.lead | 220 |
| abstract_inverted_index.many | 19 |
| abstract_inverted_index.only | 72, 105 |
| abstract_inverted_index.past | 313 |
| abstract_inverted_index.than | 138, 226 |
| abstract_inverted_index.that | 61, 159, 205, 211, 291 |
| abstract_inverted_index.then | 233 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.type | 194 |
| abstract_inverted_index.used | 54 |
| abstract_inverted_index.SERs. | 57 |
| abstract_inverted_index.bias. | 280 |
| abstract_inverted_index.data, | 99, 125 |
| abstract_inverted_index.e.g., | 100, 126, 153 |
| abstract_inverted_index.error | 275 |
| abstract_inverted_index.first | 200 |
| abstract_inverted_index.guide | 32 |
| abstract_inverted_index.kinds | 91 |
| abstract_inverted_index.lower | 225, 278 |
| abstract_inverted_index.model | 276, 290, 308 |
| abstract_inverted_index.often | 53 |
| abstract_inverted_index.scale | 137 |
| abstract_inverted_index.third | 283 |
| abstract_inverted_index.three | 90, 187 |
| abstract_inverted_index.using | 258 |
| abstract_inverted_index.which | 142 |
| abstract_inverted_index.work, | 81 |
| abstract_inverted_index.(SERs) | 15 |
| abstract_inverted_index.(e.g., | 43, 50 |
| abstract_inverted_index.(i.e., | 119, 146, 167 |
| abstract_inverted_index.Models | 241 |
| abstract_inverted_index.assume | 60 |
| abstract_inverted_index.design | 210 |
| abstract_inverted_index.insect | 230, 248 |
| abstract_inverted_index.linear | 268 |
| abstract_inverted_index.models | 38, 59, 269 |
| abstract_inverted_index.robust | 208 |
| abstract_inverted_index.second | 252 |
| abstract_inverted_index.shapes | 302 |
| abstract_inverted_index.showed | 256 |
| abstract_inverted_index.status | 113 |
| abstract_inverted_index.study, | 202, 254, 285 |
| abstract_inverted_index.tested | 185 |
| abstract_inverted_index.Berkson | 274 |
| abstract_inverted_index.Models, | 171 |
| abstract_inverted_index.account | 243 |
| abstract_inverted_index.central | 9 |
| abstract_inverted_index.coarser | 135 |
| abstract_inverted_index.concave | 301 |
| abstract_inverted_index.counts) | 46 |
| abstract_inverted_index.data.In | 198 |
| abstract_inverted_index.data:1) | 95 |
| abstract_inverted_index.effects | 85 |
| abstract_inverted_index.fitting | 39, 272 |
| abstract_inverted_index.flatten | 263 |
| abstract_inverted_index.missing | 116 |
| abstract_inverted_index.optimum | 294 |
| abstract_inverted_index.partial | 74, 108 |
| abstract_inverted_index.present | 118 |
| abstract_inverted_index.respond | 3 |
| abstract_inverted_index.sampled | 102 |
| abstract_inverted_index.shifts. | 295 |
| abstract_inverted_index.spatial | 136, 148 |
| abstract_inverted_index.species | 2, 27, 40, 101, 117, 222 |
| abstract_inverted_index.studied | 17, 145 |
| abstract_inverted_index.topics, | 20 |
| abstract_inverted_index.Bayesian | 170 |
| abstract_inverted_index.However, | 68 |
| abstract_inverted_index.Standard | 58 |
| abstract_inverted_index.actions. | 36 |
| abstract_inverted_index.allowing | 172 |
| abstract_inverted_index.averaged | 131 |
| abstract_inverted_index.describe | 160 |
| abstract_inverted_index.ecology, | 25 |
| abstract_inverted_index.ecology. | 12 |
| abstract_inverted_index.entirely | 165 |
| abstract_inverted_index.estimate | 56 |
| abstract_inverted_index.gradient | 155 |
| abstract_inverted_index.improved | 309 |
| abstract_inverted_index.interest | 10 |
| abstract_inverted_index.involves | 212 |
| abstract_inverted_index.methods, | 314 |
| abstract_inverted_index.multiple | 213 |
| abstract_inverted_index.observed | 94, 97, 123, 151, 197 |
| abstract_inverted_index.relative | 311 |
| abstract_inverted_index.response | 98 |
| abstract_inverted_index.sampling | 209, 214 |
| abstract_inverted_index.studies, | 189 |
| abstract_inverted_index.studies. | 249 |
| abstract_inverted_index.surveyed | 166 |
| abstract_inverted_index.theory), | 305 |
| abstract_inverted_index.Occupancy | 240 |
| abstract_inverted_index.Partially | 96, 122, 150 |
| abstract_inverted_index.advocated | 234 |
| abstract_inverted_index.community | 24 |
| abstract_inverted_index.covariate | 261 |
| abstract_inverted_index.detection | 217, 223, 246 |
| abstract_inverted_index.developed | 183, 287 |
| abstract_inverted_index.estimated | 265, 298 |
| abstract_inverted_index.estimates | 293, 310 |
| abstract_inverted_index.imperfect | 120, 245 |
| abstract_inverted_index.instance, | 22 |
| abstract_inverted_index.involving | 191 |
| abstract_inverted_index.modelling | 87 |
| abstract_inverted_index.occupancy | 112 |
| abstract_inverted_index.partially | 93, 196 |
| abstract_inverted_index.represent | 71, 106, 130 |
| abstract_inverted_index.truncated | 168, 320 |
| abstract_inverted_index.(following | 303 |
| abstract_inverted_index.community. | 231 |
| abstract_inverted_index.conditions | 132, 158 |
| abstract_inverted_index.ecological | 177, 304 |
| abstract_inverted_index.emphasized | 204 |
| abstract_inverted_index.especially | 315 |
| abstract_inverted_index.explicitly | 292 |
| abstract_inverted_index.gradients. | 321 |
| abstract_inverted_index.inferences | 174 |
| abstract_inverted_index.management | 35 |
| abstract_inverted_index.misaligned | 260 |
| abstract_inverted_index.modelling, | 29 |
| abstract_inverted_index.particular | 193 |
| abstract_inverted_index.processes, | 180 |
| abstract_inverted_index.replicates | 215 |
| abstract_inverted_index.techniques | 218 |
| abstract_inverted_index.Statistical | 37 |
| abstract_inverted_index.description | 75 |
| abstract_inverted_index.descriptors | 128 |
| abstract_inverted_index.environment | 6 |
| abstract_inverted_index.generalized | 267 |
| abstract_inverted_index.observation | 109 |
| abstract_inverted_index.occurrences | 103 |
| abstract_inverted_index.conservation | 33 |
| abstract_inverted_index.constraining | 297 |
| abstract_inverted_index.distribution | 28, 41 |
| abstract_inverted_index.hierarchical | 289 |
| abstract_inverted_index.investigated | 83 |
| abstract_inverted_index.temperature) | 51 |
| abstract_inverted_index.Multi-Species | 239 |
| abstract_inverted_index.area-to-point | 147, 259 |
| abstract_inverted_index.detection).2) | 121 |
| abstract_inverted_index.disentangling | 176 |
| abstract_inverted_index.environmental | 48, 124, 127, 157 |
| abstract_inverted_index.multi-species | 173 |
| abstract_inverted_index.observational | 179 |
| abstract_inverted_index.probabilities | 224 |
| abstract_inverted_index.relationship, | 152 |
| abstract_inverted_index.relationships | 14 |
| abstract_inverted_index.Characterising | 0 |
| abstract_inverted_index.representative | 64 |
| abstract_inverted_index.misalignment).3) | 149 |
| abstract_inverted_index.presence/absence | 44 |
| abstract_inverted_index.Species-environment | 13 |
| abstract_inverted_index.gradient).Hierarchical | 169 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5018062029 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |