Bayesian Monte Carlo Evaluation Framework for Imperfect Nuclear Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.13182/t125-36738
Bayesian evaluation of resolved resonance region (RRR) nuclear data has historically been carried out using the generalized least squares (GLS) formalism, as implemented in, e.g., SAMMY. We have recently developed a prototype of Bayesian Monte Carlo (BMC) evaluation framework, implemented using a Markov Chain Monte Carlo (MCMC) method with a Metropolis-Hastings (MH) acceptance criterion. This was done in order to remove the approximations underlying the conventional GLS evaluations, namely, the linear approximation, and the approximation that all probability density functions (PDFs) are of the normal kind. Recent works by others have used similar stochastic approaches to quantify cross section uncertainties from ENDF evaluated co-variances, and/or, from integral benchmark data, but those have not been conceived as an evaluation framework like the one presented here.
Related Topics
- Type
- paratext
- Language
- en
- Landing Page
- https://www.osti.gov/biblio/1846534
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225614386
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225614386Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13182/t125-36738Digital Object Identifier
- Title
-
Bayesian Monte Carlo Evaluation Framework for Imperfect Nuclear DataWork title
- Type
-
paratextOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Jesse A. Brown, Goran Arbanas, Andrew Holcomb, Dorothea WiardaList of authors in order
- Landing page
-
https://www.osti.gov/biblio/1846534Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1846534Direct OA link when available
- Concepts
-
Monte Carlo method, Computer science, Bayesian probability, Imperfect, Data mining, Econometrics, Artificial intelligence, Statistics, Mathematics, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225614386 |
|---|---|
| doi | https://doi.org/10.13182/t125-36738 |
| ids.openalex | https://openalex.org/W4225614386 |
| fwci | |
| type | paratext |
| title | Bayesian Monte Carlo Evaluation Framework for Imperfect Nuclear Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9868999719619751 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Nuclear reactor physics and engineering |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9836999773979187 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11949 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.972100019454956 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Nuclear Physics and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7107390761375427 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6792657375335693 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6512242555618286 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C2780310539 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6258332133293152 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12547192 |
| concepts[3].display_name | Imperfect |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3460956811904907 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3239437937736511 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.30064594745635986 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17761996388435364 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12630200386047363 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.7107390761375427 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6792657375335693 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.6512242555618286 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/imperfect |
| keywords[3].score | 0.6258332133293152 |
| keywords[3].display_name | Imperfect |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3460956811904907 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.3239437937736511 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.30064594745635986 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.17761996388435364 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.12630200386047363 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:osti.gov:1846534 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402487 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[0].source.host_organization | https://openalex.org/I139351228 |
| locations[0].source.host_organization_name | Office of Scientific and Technical Information |
| locations[0].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://www.osti.gov/biblio/1846534 |
| authorships[0].author.id | https://openalex.org/A5090742144 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3139-9451 |
| authorships[0].author.display_name | Jesse A. Brown |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[0].affiliations[0].raw_affiliation_string | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[0].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brown, Jesse |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[1].author.id | https://openalex.org/A5064530954 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8735-4762 |
| authorships[1].author.display_name | Goran Arbanas |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[1].affiliations[0].raw_affiliation_string | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[1].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arbanas, Goran |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[2].author.id | https://openalex.org/A5046370398 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1168-9002 |
| authorships[2].author.display_name | Andrew Holcomb |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[2].affiliations[0].raw_affiliation_string | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[2].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Holcomb, Andrew M. |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[3].author.id | https://openalex.org/A5079638024 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6283-185X |
| authorships[3].author.display_name | Dorothea Wiarda |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[3].affiliations[0].raw_affiliation_string | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[3].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wiarda, Dorothea |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1846534 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Monte Carlo Evaluation Framework for Imperfect Nuclear Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9868999719619751 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Nuclear reactor physics and engineering |
| related_works | https://openalex.org/W2374250903, https://openalex.org/W2487056937, https://openalex.org/W1546413948, https://openalex.org/W42072456, https://openalex.org/W2263832889, https://openalex.org/W2243884323, https://openalex.org/W2089057551, https://openalex.org/W2607023851, https://openalex.org/W2012179620, https://openalex.org/W4243095785 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:osti.gov:1846534 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1846534 |
| primary_location.id | pmh:oai:osti.gov:1846534 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402487 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| primary_location.source.host_organization | https://openalex.org/I139351228 |
| primary_location.source.host_organization_name | Office of Scientific and Technical Information |
| primary_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://www.osti.gov/biblio/1846534 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 41, 49 |
| abstract_inverted_index.We | 26 |
| abstract_inverted_index.an | 116 |
| abstract_inverted_index.as | 21, 115 |
| abstract_inverted_index.by | 88 |
| abstract_inverted_index.in | 57 |
| abstract_inverted_index.of | 2, 32, 82 |
| abstract_inverted_index.to | 59, 95 |
| abstract_inverted_index.GLS | 66 |
| abstract_inverted_index.all | 76 |
| abstract_inverted_index.and | 72 |
| abstract_inverted_index.are | 81 |
| abstract_inverted_index.but | 109 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.in, | 23 |
| abstract_inverted_index.not | 112 |
| abstract_inverted_index.one | 121 |
| abstract_inverted_index.out | 13 |
| abstract_inverted_index.the | 15, 61, 64, 69, 73, 83, 120 |
| abstract_inverted_index.was | 55 |
| abstract_inverted_index.(MH) | 51 |
| abstract_inverted_index.ENDF | 101 |
| abstract_inverted_index.This | 54 |
| abstract_inverted_index.been | 11, 113 |
| abstract_inverted_index.data | 8 |
| abstract_inverted_index.done | 56 |
| abstract_inverted_index.from | 100, 105 |
| abstract_inverted_index.have | 27, 90, 111 |
| abstract_inverted_index.like | 119 |
| abstract_inverted_index.that | 75 |
| abstract_inverted_index.used | 91 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.(BMC) | 36 |
| abstract_inverted_index.(GLS) | 19 |
| abstract_inverted_index.(RRR) | 6 |
| abstract_inverted_index.Carlo | 35, 45 |
| abstract_inverted_index.Chain | 43 |
| abstract_inverted_index.Monte | 34, 44 |
| abstract_inverted_index.cross | 97 |
| abstract_inverted_index.data, | 108 |
| abstract_inverted_index.e.g., | 24 |
| abstract_inverted_index.here. | 123 |
| abstract_inverted_index.kind. | 85 |
| abstract_inverted_index.least | 17 |
| abstract_inverted_index.order | 58 |
| abstract_inverted_index.those | 110 |
| abstract_inverted_index.using | 14, 40 |
| abstract_inverted_index.works | 87 |
| abstract_inverted_index.(MCMC) | 46 |
| abstract_inverted_index.(PDFs) | 80 |
| abstract_inverted_index.Markov | 42 |
| abstract_inverted_index.Recent | 86 |
| abstract_inverted_index.SAMMY. | 25 |
| abstract_inverted_index.linear | 70 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.normal | 84 |
| abstract_inverted_index.others | 89 |
| abstract_inverted_index.region | 5 |
| abstract_inverted_index.remove | 60 |
| abstract_inverted_index.and/or, | 104 |
| abstract_inverted_index.carried | 12 |
| abstract_inverted_index.density | 78 |
| abstract_inverted_index.namely, | 68 |
| abstract_inverted_index.nuclear | 7 |
| abstract_inverted_index.section | 98 |
| abstract_inverted_index.similar | 92 |
| abstract_inverted_index.squares | 18 |
| abstract_inverted_index.Bayesian | 0, 33 |
| abstract_inverted_index.integral | 106 |
| abstract_inverted_index.quantify | 96 |
| abstract_inverted_index.recently | 28 |
| abstract_inverted_index.resolved | 3 |
| abstract_inverted_index.benchmark | 107 |
| abstract_inverted_index.conceived | 114 |
| abstract_inverted_index.developed | 29 |
| abstract_inverted_index.evaluated | 102 |
| abstract_inverted_index.framework | 118 |
| abstract_inverted_index.functions | 79 |
| abstract_inverted_index.presented | 122 |
| abstract_inverted_index.prototype | 31 |
| abstract_inverted_index.resonance | 4 |
| abstract_inverted_index.acceptance | 52 |
| abstract_inverted_index.approaches | 94 |
| abstract_inverted_index.criterion. | 53 |
| abstract_inverted_index.evaluation | 1, 37, 117 |
| abstract_inverted_index.formalism, | 20 |
| abstract_inverted_index.framework, | 38 |
| abstract_inverted_index.stochastic | 93 |
| abstract_inverted_index.underlying | 63 |
| abstract_inverted_index.generalized | 16 |
| abstract_inverted_index.implemented | 22, 39 |
| abstract_inverted_index.probability | 77 |
| abstract_inverted_index.conventional | 65 |
| abstract_inverted_index.evaluations, | 67 |
| abstract_inverted_index.historically | 10 |
| abstract_inverted_index.approximation | 74 |
| abstract_inverted_index.co-variances, | 103 |
| abstract_inverted_index.uncertainties | 99 |
| abstract_inverted_index.approximation, | 71 |
| abstract_inverted_index.approximations | 62 |
| abstract_inverted_index.Metropolis-Hastings | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |