Bayesian multilevel compositional data analysis: Introduction, evaluation, and application. Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1037/met0000750
Multilevel compositional data are data that are repeatedly measured or clustered within groups, and are nonnegative and sum to a constant value. These data arise in various settings, such as intensive, longitudinal studies using ecological momentary assessments and wearable devices. Examples include 24-hr sleep-wake behaviors, sleep architecture, and macronutrients. This article presents an innovative method for analyzing multilevel compositional data using Bayesian inference. We describe the theoretical details of the data and the models, and outline the steps necessary to implement this method. We introduce the R package multilevelcoda to facilitate the application of this method and illustrate using a real data example. An extensive parameter recovery simulation study verified the robust performance of the method. Across all conditions investigated in the simulation study, the fitted models had minimal convergence issues (convergence rate > 99%) and achieved excellent quality parameter estimates and inference, with an average bias of 0.00 (range = -0.09 to 0.05) and coverage of 0.95 (range = 0.93 to 0.97). We conclude the article with recommendations on the use of the Bayesian multilevel compositional data analysis. We hope to promote wider application of this method to gain novel and robust answers to scientific questions. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1037/met0000750
- OA Status
- hybrid
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409455677
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409455677Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1037/met0000750Digital Object Identifier
- Title
-
Bayesian multilevel compositional data analysis: Introduction, evaluation, and application.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Flora Le, Ty Stanford, Dorothea Dumuid, Joshua F. WileyList of authors in order
- Landing page
-
https://doi.org/10.1037/met0000750Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1037/met0000750Direct OA link when available
- Concepts
-
Bayesian probability, Multilevel model, Statistics, Statistical analysis, Econometrics, Computer science, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409455677 |
|---|---|
| doi | https://doi.org/10.1037/met0000750 |
| ids.doi | https://doi.org/10.1037/met0000750 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40232754 |
| ids.openalex | https://openalex.org/W4409455677 |
| fwci | 38.55796117 |
| type | article |
| title | Bayesian multilevel compositional data analysis: Introduction, evaluation, and application. |
| awards[0].id | https://openalex.org/G7562753516 |
| awards[0].funder_id | https://openalex.org/F4320334705 |
| awards[0].display_name | |
| awards[0].funder_award_id | GNT1171981 |
| awards[0].funder_display_name | National Health and Medical Research Council |
| awards[1].id | https://openalex.org/G8876613064 |
| awards[1].funder_id | https://openalex.org/F4320334705 |
| awards[1].display_name | |
| awards[1].funder_award_id | 1178487 |
| awards[1].funder_display_name | National Health and Medical Research Council |
| awards[2].id | https://openalex.org/G1474872994 |
| awards[2].funder_id | https://openalex.org/F4320334704 |
| awards[2].display_name | |
| awards[2].funder_award_id | DE230101174 |
| awards[2].funder_display_name | Australian Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12157 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Geochemistry and Geologic Mapping |
| funders[0].id | https://openalex.org/F4320320971 |
| funders[0].ror | https://ror.org/02bfwt286 |
| funders[0].display_name | Monash University |
| funders[1].id | https://openalex.org/F4320334704 |
| funders[1].ror | https://ror.org/05mmh0f86 |
| funders[1].display_name | Australian Research Council |
| funders[2].id | https://openalex.org/F4320334705 |
| funders[2].ror | https://ror.org/011kf5r70 |
| funders[2].display_name | National Health and Medical Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107673813 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6117027401924133 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[0].display_name | Bayesian probability |
| concepts[1].id | https://openalex.org/C53059260 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5585315823554993 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q374758 |
| concepts[1].display_name | Multilevel model |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.512675404548645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C2986587452 |
| concepts[3].level | 2 |
| concepts[3].score | 0.43903273344039917 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[3].display_name | Statistical analysis |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4296976327896118 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.37284812331199646 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3256811797618866 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/bayesian-probability |
| keywords[0].score | 0.6117027401924133 |
| keywords[0].display_name | Bayesian probability |
| keywords[1].id | https://openalex.org/keywords/multilevel-model |
| keywords[1].score | 0.5585315823554993 |
| keywords[1].display_name | Multilevel model |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.512675404548645 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/statistical-analysis |
| keywords[3].score | 0.43903273344039917 |
| keywords[3].display_name | Statistical analysis |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.4296976327896118 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.37284812331199646 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3256811797618866 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1037/met0000750 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S45419345 |
| locations[0].source.issn | 1082-989X, 1939-1463 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1082-989X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Psychological Methods |
| locations[0].source.host_organization | https://openalex.org/P4310320262 |
| locations[0].source.host_organization_name | American Psychological Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320262 |
| locations[0].source.host_organization_lineage_names | American Psychological Association |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Psychological Methods |
| locations[0].landing_page_url | https://doi.org/10.1037/met0000750 |
| locations[1].id | pmid:40232754 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Psychological methods |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40232754 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5074463237 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0089-8167 |
| authorships[0].author.display_name | Flora Le |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Psychological Sciences, Monash University. |
| authorships[0].institutions[0].id | https://openalex.org/I56590836 |
| authorships[0].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Monash University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Flora Le |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Psychological Sciences, Monash University. |
| authorships[1].author.id | https://openalex.org/A5012517616 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8570-5493 |
| authorships[1].author.display_name | Ty Stanford |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170239107 |
| authorships[1].affiliations[0].raw_affiliation_string | Alliance for Research in Exercise, Nutrition and Activity, University of South Australia. |
| authorships[1].institutions[0].id | https://openalex.org/I170239107 |
| authorships[1].institutions[0].ror | https://ror.org/01p93h210 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170239107 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of South Australia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tyman E Stanford |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Alliance for Research in Exercise, Nutrition and Activity, University of South Australia. |
| authorships[2].author.id | https://openalex.org/A5036093992 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3057-0963 |
| authorships[2].author.display_name | Dorothea Dumuid |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170239107 |
| authorships[2].affiliations[0].raw_affiliation_string | Alliance for Research in Exercise, Nutrition and Activity, University of South Australia. |
| authorships[2].institutions[0].id | https://openalex.org/I170239107 |
| authorships[2].institutions[0].ror | https://ror.org/01p93h210 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170239107 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of South Australia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dorothea Dumuid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Alliance for Research in Exercise, Nutrition and Activity, University of South Australia. |
| authorships[3].author.id | https://openalex.org/A5002932877 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0271-6702 |
| authorships[3].author.display_name | Joshua F. Wiley |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Psychological Sciences, Monash University. |
| authorships[3].institutions[0].id | https://openalex.org/I56590836 |
| authorships[3].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Monash University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joshua F Wiley |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Psychological Sciences, Monash University. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1037/met0000750 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian multilevel compositional data analysis: Introduction, evaluation, and application. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12157 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Geochemistry and Geologic Mapping |
| related_works | https://openalex.org/W2042287631, https://openalex.org/W4390800365, https://openalex.org/W3015691161, https://openalex.org/W4389288247, https://openalex.org/W1922851888, https://openalex.org/W1970693217, https://openalex.org/W2127134898, https://openalex.org/W1970241727, https://openalex.org/W2010449447, https://openalex.org/W4389288262 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1037/met0000750 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S45419345 |
| best_oa_location.source.issn | 1082-989X, 1939-1463 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1082-989X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Psychological Methods |
| best_oa_location.source.host_organization | https://openalex.org/P4310320262 |
| best_oa_location.source.host_organization_name | American Psychological Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320262 |
| best_oa_location.source.host_organization_lineage_names | American Psychological Association |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Psychological Methods |
| best_oa_location.landing_page_url | https://doi.org/10.1037/met0000750 |
| primary_location.id | doi:10.1037/met0000750 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S45419345 |
| primary_location.source.issn | 1082-989X, 1939-1463 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1082-989X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Psychological Methods |
| primary_location.source.host_organization | https://openalex.org/P4310320262 |
| primary_location.source.host_organization_name | American Psychological Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320262 |
| primary_location.source.host_organization_lineage_names | American Psychological Association |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Psychological Methods |
| primary_location.landing_page_url | https://doi.org/10.1037/met0000750 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 150, 159 |
| abstract_inverted_index.> | 133 |
| abstract_inverted_index.R | 86 |
| abstract_inverted_index.a | 19, 99 |
| abstract_inverted_index.An | 103 |
| abstract_inverted_index.We | 63, 83, 163, 179 |
| abstract_inverted_index.an | 52, 144 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.in | 25, 120 |
| abstract_inverted_index.of | 68, 93, 113, 147, 156, 172, 185 |
| abstract_inverted_index.on | 169 |
| abstract_inverted_index.or | 9 |
| abstract_inverted_index.to | 18, 79, 89, 152, 161, 181, 188, 194 |
| abstract_inverted_index.(c) | 200 |
| abstract_inverted_index.all | 117, 203 |
| abstract_inverted_index.and | 13, 16, 37, 47, 71, 74, 96, 135, 141, 154, 191 |
| abstract_inverted_index.are | 3, 6, 14 |
| abstract_inverted_index.for | 55 |
| abstract_inverted_index.had | 127 |
| abstract_inverted_index.sum | 17 |
| abstract_inverted_index.the | 65, 69, 72, 76, 85, 91, 110, 114, 121, 124, 165, 170, 173 |
| abstract_inverted_index.use | 171 |
| abstract_inverted_index.0.00 | 148 |
| abstract_inverted_index.0.93 | 160 |
| abstract_inverted_index.0.95 | 157 |
| abstract_inverted_index.2025 | 201 |
| abstract_inverted_index.99%) | 134 |
| abstract_inverted_index.APA, | 202 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.bias | 146 |
| abstract_inverted_index.data | 2, 4, 23, 59, 70, 101, 177 |
| abstract_inverted_index.gain | 189 |
| abstract_inverted_index.hope | 180 |
| abstract_inverted_index.rate | 132 |
| abstract_inverted_index.real | 100 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 5 |
| abstract_inverted_index.this | 81, 94, 186 |
| abstract_inverted_index.with | 143, 167 |
| abstract_inverted_index.-0.09 | 151 |
| abstract_inverted_index.0.05) | 153 |
| abstract_inverted_index.24-hr | 42 |
| abstract_inverted_index.These | 22 |
| abstract_inverted_index.arise | 24 |
| abstract_inverted_index.novel | 190 |
| abstract_inverted_index.sleep | 45 |
| abstract_inverted_index.steps | 77 |
| abstract_inverted_index.study | 108 |
| abstract_inverted_index.using | 33, 60, 98 |
| abstract_inverted_index.wider | 183 |
| abstract_inverted_index.(range | 149, 158 |
| abstract_inverted_index.0.97). | 162 |
| abstract_inverted_index.Across | 116 |
| abstract_inverted_index.Record | 199 |
| abstract_inverted_index.fitted | 125 |
| abstract_inverted_index.issues | 130 |
| abstract_inverted_index.method | 54, 95, 187 |
| abstract_inverted_index.models | 126 |
| abstract_inverted_index.rights | 204 |
| abstract_inverted_index.robust | 111, 192 |
| abstract_inverted_index.study, | 123 |
| abstract_inverted_index.value. | 21 |
| abstract_inverted_index.within | 11 |
| abstract_inverted_index.answers | 193 |
| abstract_inverted_index.article | 50, 166 |
| abstract_inverted_index.average | 145 |
| abstract_inverted_index.details | 67 |
| abstract_inverted_index.groups, | 12 |
| abstract_inverted_index.include | 41 |
| abstract_inverted_index.method. | 82, 115 |
| abstract_inverted_index.minimal | 128 |
| abstract_inverted_index.models, | 73 |
| abstract_inverted_index.outline | 75 |
| abstract_inverted_index.package | 87 |
| abstract_inverted_index.promote | 182 |
| abstract_inverted_index.quality | 138 |
| abstract_inverted_index.studies | 32 |
| abstract_inverted_index.various | 26 |
| abstract_inverted_index.Bayesian | 61, 174 |
| abstract_inverted_index.Database | 198 |
| abstract_inverted_index.Examples | 40 |
| abstract_inverted_index.achieved | 136 |
| abstract_inverted_index.conclude | 164 |
| abstract_inverted_index.constant | 20 |
| abstract_inverted_index.coverage | 155 |
| abstract_inverted_index.describe | 64 |
| abstract_inverted_index.devices. | 39 |
| abstract_inverted_index.example. | 102 |
| abstract_inverted_index.measured | 8 |
| abstract_inverted_index.presents | 51 |
| abstract_inverted_index.recovery | 106 |
| abstract_inverted_index.verified | 109 |
| abstract_inverted_index.wearable | 38 |
| abstract_inverted_index.(PsycInfo | 197 |
| abstract_inverted_index.analysis. | 178 |
| abstract_inverted_index.analyzing | 56 |
| abstract_inverted_index.clustered | 10 |
| abstract_inverted_index.estimates | 140 |
| abstract_inverted_index.excellent | 137 |
| abstract_inverted_index.extensive | 104 |
| abstract_inverted_index.implement | 80 |
| abstract_inverted_index.introduce | 84 |
| abstract_inverted_index.momentary | 35 |
| abstract_inverted_index.necessary | 78 |
| abstract_inverted_index.parameter | 105, 139 |
| abstract_inverted_index.settings, | 27 |
| abstract_inverted_index.Multilevel | 0 |
| abstract_inverted_index.behaviors, | 44 |
| abstract_inverted_index.conditions | 118 |
| abstract_inverted_index.ecological | 34 |
| abstract_inverted_index.facilitate | 90 |
| abstract_inverted_index.illustrate | 97 |
| abstract_inverted_index.inference, | 142 |
| abstract_inverted_index.inference. | 62 |
| abstract_inverted_index.innovative | 53 |
| abstract_inverted_index.intensive, | 30 |
| abstract_inverted_index.multilevel | 57, 175 |
| abstract_inverted_index.questions. | 196 |
| abstract_inverted_index.repeatedly | 7 |
| abstract_inverted_index.reserved). | 205 |
| abstract_inverted_index.scientific | 195 |
| abstract_inverted_index.simulation | 107, 122 |
| abstract_inverted_index.sleep-wake | 43 |
| abstract_inverted_index.application | 92, 184 |
| abstract_inverted_index.assessments | 36 |
| abstract_inverted_index.convergence | 129 |
| abstract_inverted_index.nonnegative | 15 |
| abstract_inverted_index.performance | 112 |
| abstract_inverted_index.theoretical | 66 |
| abstract_inverted_index.(convergence | 131 |
| abstract_inverted_index.investigated | 119 |
| abstract_inverted_index.longitudinal | 31 |
| abstract_inverted_index.architecture, | 46 |
| abstract_inverted_index.compositional | 1, 58, 176 |
| abstract_inverted_index.multilevelcoda | 88 |
| abstract_inverted_index.macronutrients. | 48 |
| abstract_inverted_index.recommendations | 168 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.9962179 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |