Bayesian Optimized ANFIS Network Using Grid Partition and Feature Spectrum for Urban Light Pollution Assessment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jphot.2025.3553420
Precise luminance evaluation of light pollution requires expensive and time-consuming measurement devices such as hyperspectral imaging cameras and imaging luminance-meters, which are also inconvenient to carry. To alleviate this challenge, we selected a low-cost smartphone camera sensor as an alternative tool and investigated the various factors that could influence the accuracy of the measurements by controlling the function of the sensor and assessing its performance, including light illumination conditions and device parameters. Building on this, we have developed an Adaptive Neuro-fuzzy Inference System (ANFIS) structure utilizing global Bayesian optimization and grid partitioning (GP), which integrates the advantages of fuzzy logic in handling data uncertainty with the self-learning capabilities of artificial neural networks. This method can capture the relationships between different parameter combinations while avoiding overfitting, effectively handling unseen data with rapid convergence. The experimental results demonstrate that this method reduces the error by at least 30% compared to conventional methods when tested on a dataset with previously unseen shot parameters. Using a smartphone as a measurement device offers superior portability and broader prospects compared to cameras. Leveraging the powerful processing capabilities of smartphone platforms, we can implement more advanced visualization and computational functions in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jphot.2025.3553420
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408710819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408710819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jphot.2025.3553420Digital Object Identifier
- Title
-
Bayesian Optimized ANFIS Network Using Grid Partition and Feature Spectrum for Urban Light Pollution AssessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-22Full publication date if available
- Authors
-
Nuoqi Wang, Cheng Wang, Zhihong Zhao, Peiyu Wu, Wenqian Xu, Bang Qin, Dong Wang, Rongjun Zhang, Qi YaoList of authors in order
- Landing page
-
https://doi.org/10.1109/jphot.2025.3553420Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jphot.2025.3553420Direct OA link when available
- Concepts
-
Computer science, Partition (number theory), Light pollution, Grid, Adaptive neuro fuzzy inference system, Artificial intelligence, Bayesian probability, Feature (linguistics), Bayesian network, Pattern recognition (psychology), Data mining, Environmental science, Machine learning, Fuzzy logic, Mathematics, Fuzzy control system, Optics, Linguistics, Combinatorics, Geometry, Physics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408710819 |
|---|---|
| doi | https://doi.org/10.1109/jphot.2025.3553420 |
| ids.doi | https://doi.org/10.1109/jphot.2025.3553420 |
| ids.openalex | https://openalex.org/W4408710819 |
| fwci | 0.0 |
| type | article |
| title | Bayesian Optimized ANFIS Network Using Grid Partition and Feature Spectrum for Urban Light Pollution Assessment |
| awards[0].id | https://openalex.org/G3598951564 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U2230108 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G5133288782 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62275051 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 17 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9280999898910522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T11963 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9171000123023987 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Impact of Light on Environment and Health |
| topics[2].id | https://openalex.org/T14249 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9143000245094299 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2311 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Water Quality Monitoring and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1820 |
| apc_list.currency | USD |
| apc_list.value_usd | 1820 |
| apc_paid.value | 1820 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1820 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7529736757278442 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C42812 |
| concepts[1].level | 2 |
| concepts[1].score | 0.65581876039505 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[1].display_name | Partition (number theory) |
| concepts[2].id | https://openalex.org/C161421721 |
| concepts[2].level | 2 |
| concepts[2].score | 0.617035448551178 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180644 |
| concepts[2].display_name | Light pollution |
| concepts[3].id | https://openalex.org/C187691185 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5570966601371765 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[3].display_name | Grid |
| concepts[4].id | https://openalex.org/C186108316 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5145694613456726 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q352530 |
| concepts[4].display_name | Adaptive neuro fuzzy inference system |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4876033365726471 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4785521626472473 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4695361852645874 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C33724603 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42275992035865784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[8].display_name | Bayesian network |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3881380259990692 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3805530071258545 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C39432304 |
| concepts[11].level | 0 |
| concepts[11].score | 0.344527006149292 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[11].display_name | Environmental science |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3288097381591797 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C58166 |
| concepts[13].level | 2 |
| concepts[13].score | 0.12072458863258362 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[13].display_name | Fuzzy logic |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1038065254688263 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C195975749 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0784965455532074 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1475705 |
| concepts[15].display_name | Fuzzy control system |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07339411973953247 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7529736757278442 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/partition |
| keywords[1].score | 0.65581876039505 |
| keywords[1].display_name | Partition (number theory) |
| keywords[2].id | https://openalex.org/keywords/light-pollution |
| keywords[2].score | 0.617035448551178 |
| keywords[2].display_name | Light pollution |
| keywords[3].id | https://openalex.org/keywords/grid |
| keywords[3].score | 0.5570966601371765 |
| keywords[3].display_name | Grid |
| keywords[4].id | https://openalex.org/keywords/adaptive-neuro-fuzzy-inference-system |
| keywords[4].score | 0.5145694613456726 |
| keywords[4].display_name | Adaptive neuro fuzzy inference system |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4876033365726471 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.4785521626472473 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.4695361852645874 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/bayesian-network |
| keywords[8].score | 0.42275992035865784 |
| keywords[8].display_name | Bayesian network |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3881380259990692 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3805530071258545 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/environmental-science |
| keywords[11].score | 0.344527006149292 |
| keywords[11].display_name | Environmental science |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3288097381591797 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[13].score | 0.12072458863258362 |
| keywords[13].display_name | Fuzzy logic |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1038065254688263 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/fuzzy-control-system |
| keywords[15].score | 0.0784965455532074 |
| keywords[15].display_name | Fuzzy control system |
| keywords[16].id | https://openalex.org/keywords/optics |
| keywords[16].score | 0.07339411973953247 |
| keywords[16].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1109/jphot.2025.3553420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72499069 |
| locations[0].source.issn | 1943-0647, 1943-0655 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1943-0647 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE photonics journal |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Photonics Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jphot.2025.3553420 |
| locations[1].id | pmh:oai:doaj.org/article:519227594037448180f9074968dd0552 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Photonics Journal, Vol 17, Iss 2, Pp 1-11 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/519227594037448180f9074968dd0552 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108882847 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nuoqi Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I24943067 |
| authorships[0].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fudan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nuoqi Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5100416961 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6075-796X |
| authorships[1].author.display_name | Cheng Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I24943067 |
| authorships[1].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Fudan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cheng Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5111360132 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhihong Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[2].affiliations[0].raw_affiliation_string | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[2].institutions[0].id | https://openalex.org/I24943067 |
| authorships[2].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Fudan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhihong Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[3].author.id | https://openalex.org/A5101557756 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1563-5925 |
| authorships[3].author.display_name | Peiyu Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[3].affiliations[0].raw_affiliation_string | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I24943067 |
| authorships[3].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fudan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peiyu Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5074779671 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4815-6253 |
| authorships[4].author.display_name | Wenqian Xu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[4].affiliations[0].raw_affiliation_string | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I24943067 |
| authorships[4].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fudan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wenqian Xu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5102658109 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Bang Qin |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I24943067 |
| authorships[5].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fudan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bang Qin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[6].author.id | https://openalex.org/A5100601719 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2784-0045 |
| authorships[6].author.display_name | Dong Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[6].affiliations[0].raw_affiliation_string | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[6].institutions[0].id | https://openalex.org/I24943067 |
| authorships[6].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Fudan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dong Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[7].author.id | https://openalex.org/A5020720471 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1798-9922 |
| authorships[7].author.display_name | Rongjun Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[7].institutions[0].id | https://openalex.org/I24943067 |
| authorships[7].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Fudan University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Rongjun Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Optical Science and Engineering Key Laboratory of Micro and Nano Photonic Structures (MOE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Fudan University, Shanghai, China |
| authorships[8].author.id | https://openalex.org/A5011243266 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4897-0423 |
| authorships[8].author.display_name | Qi Yao |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I24943067 |
| authorships[8].affiliations[0].raw_affiliation_string | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| authorships[8].institutions[0].id | https://openalex.org/I24943067 |
| authorships[8].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Fudan University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Qi Yao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Academy for Engineering and Technology, Fudan University, Shanghai, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jphot.2025.3553420 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Optimized ANFIS Network Using Grid Partition and Feature Spectrum for Urban Light Pollution Assessment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9280999898910522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W2114654021, https://openalex.org/W1972110805, https://openalex.org/W2263529430, https://openalex.org/W2389800468, https://openalex.org/W4390103748, https://openalex.org/W2186419259, https://openalex.org/W3206829958, https://openalex.org/W2763641192, https://openalex.org/W1999578589, https://openalex.org/W2150377753 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jphot.2025.3553420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72499069 |
| best_oa_location.source.issn | 1943-0647, 1943-0655 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1943-0647 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE photonics journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Photonics Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jphot.2025.3553420 |
| primary_location.id | doi:10.1109/jphot.2025.3553420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72499069 |
| primary_location.source.issn | 1943-0647, 1943-0655 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1943-0647 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE photonics journal |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Photonics Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jphot.2025.3553420 |
| publication_date | 2025-03-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2112384378, https://openalex.org/W3092599428, https://openalex.org/W1568174583, https://openalex.org/W2105613766, https://openalex.org/W6735063345, https://openalex.org/W2772877318, https://openalex.org/W3003725787, https://openalex.org/W3214905027, https://openalex.org/W2755794489, https://openalex.org/W3126458069, https://openalex.org/W1978377976, https://openalex.org/W2549696697, https://openalex.org/W3197596233, https://openalex.org/W2045278678, https://openalex.org/W2990078838, https://openalex.org/W3019641425, https://openalex.org/W2593440416, https://openalex.org/W1655795019, https://openalex.org/W2592984298, https://openalex.org/W2791366635, https://openalex.org/W6678911119 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 32, 153, 161, 164 |
| abstract_inverted_index.To | 26 |
| abstract_inverted_index.an | 38, 78 |
| abstract_inverted_index.as | 13, 37, 163 |
| abstract_inverted_index.at | 143 |
| abstract_inverted_index.by | 54, 142 |
| abstract_inverted_index.in | 100, 193 |
| abstract_inverted_index.of | 3, 51, 58, 97, 108, 181 |
| abstract_inverted_index.on | 73, 152 |
| abstract_inverted_index.to | 24, 147, 174 |
| abstract_inverted_index.we | 30, 75, 184 |
| abstract_inverted_index.30% | 145 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.and | 8, 17, 41, 61, 69, 89, 170, 190 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.can | 114, 185 |
| abstract_inverted_index.its | 63 |
| abstract_inverted_index.the | 43, 49, 52, 56, 59, 95, 105, 116, 140, 177, 194 |
| abstract_inverted_index.This | 112 |
| abstract_inverted_index.also | 22 |
| abstract_inverted_index.data | 102, 128 |
| abstract_inverted_index.grid | 90 |
| abstract_inverted_index.have | 76 |
| abstract_inverted_index.more | 187 |
| abstract_inverted_index.shot | 158 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 46, 136 |
| abstract_inverted_index.this | 28, 137 |
| abstract_inverted_index.tool | 40 |
| abstract_inverted_index.when | 150 |
| abstract_inverted_index.with | 104, 129, 155 |
| abstract_inverted_index.(GP), | 92 |
| abstract_inverted_index.Using | 160 |
| abstract_inverted_index.could | 47 |
| abstract_inverted_index.error | 141 |
| abstract_inverted_index.fuzzy | 98 |
| abstract_inverted_index.least | 144 |
| abstract_inverted_index.light | 4, 66 |
| abstract_inverted_index.logic | 99 |
| abstract_inverted_index.rapid | 130 |
| abstract_inverted_index.this, | 74 |
| abstract_inverted_index.which | 20, 93 |
| abstract_inverted_index.while | 122 |
| abstract_inverted_index.System | 82 |
| abstract_inverted_index.camera | 35 |
| abstract_inverted_index.carry. | 25 |
| abstract_inverted_index.device | 70, 166 |
| abstract_inverted_index.global | 86 |
| abstract_inverted_index.method | 113, 138 |
| abstract_inverted_index.neural | 110 |
| abstract_inverted_index.offers | 167 |
| abstract_inverted_index.sensor | 36, 60 |
| abstract_inverted_index.tested | 151 |
| abstract_inverted_index.unseen | 127, 157 |
| abstract_inverted_index.(ANFIS) | 83 |
| abstract_inverted_index.Precise | 0 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.broader | 171 |
| abstract_inverted_index.cameras | 16 |
| abstract_inverted_index.capture | 115 |
| abstract_inverted_index.dataset | 154 |
| abstract_inverted_index.devices | 11 |
| abstract_inverted_index.factors | 45 |
| abstract_inverted_index.future. | 195 |
| abstract_inverted_index.imaging | 15, 18 |
| abstract_inverted_index.methods | 149 |
| abstract_inverted_index.reduces | 139 |
| abstract_inverted_index.results | 134 |
| abstract_inverted_index.various | 44 |
| abstract_inverted_index.Adaptive | 79 |
| abstract_inverted_index.Bayesian | 87 |
| abstract_inverted_index.Building | 72 |
| abstract_inverted_index.accuracy | 50 |
| abstract_inverted_index.advanced | 188 |
| abstract_inverted_index.avoiding | 123 |
| abstract_inverted_index.cameras. | 175 |
| abstract_inverted_index.compared | 146, 173 |
| abstract_inverted_index.function | 57 |
| abstract_inverted_index.handling | 101, 126 |
| abstract_inverted_index.low-cost | 33 |
| abstract_inverted_index.powerful | 178 |
| abstract_inverted_index.requires | 6 |
| abstract_inverted_index.selected | 31 |
| abstract_inverted_index.superior | 168 |
| abstract_inverted_index.Inference | 81 |
| abstract_inverted_index.alleviate | 27 |
| abstract_inverted_index.assessing | 62 |
| abstract_inverted_index.developed | 77 |
| abstract_inverted_index.different | 119 |
| abstract_inverted_index.expensive | 7 |
| abstract_inverted_index.functions | 192 |
| abstract_inverted_index.implement | 186 |
| abstract_inverted_index.including | 65 |
| abstract_inverted_index.influence | 48 |
| abstract_inverted_index.luminance | 1 |
| abstract_inverted_index.networks. | 111 |
| abstract_inverted_index.parameter | 120 |
| abstract_inverted_index.pollution | 5 |
| abstract_inverted_index.prospects | 172 |
| abstract_inverted_index.structure | 84 |
| abstract_inverted_index.utilizing | 85 |
| abstract_inverted_index.Leveraging | 176 |
| abstract_inverted_index.advantages | 96 |
| abstract_inverted_index.artificial | 109 |
| abstract_inverted_index.challenge, | 29 |
| abstract_inverted_index.conditions | 68 |
| abstract_inverted_index.evaluation | 2 |
| abstract_inverted_index.integrates | 94 |
| abstract_inverted_index.platforms, | 183 |
| abstract_inverted_index.previously | 156 |
| abstract_inverted_index.processing | 179 |
| abstract_inverted_index.smartphone | 34, 162, 182 |
| abstract_inverted_index.Neuro-fuzzy | 80 |
| abstract_inverted_index.alternative | 39 |
| abstract_inverted_index.controlling | 55 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.effectively | 125 |
| abstract_inverted_index.measurement | 10, 165 |
| abstract_inverted_index.parameters. | 71, 159 |
| abstract_inverted_index.portability | 169 |
| abstract_inverted_index.uncertainty | 103 |
| abstract_inverted_index.capabilities | 107, 180 |
| abstract_inverted_index.combinations | 121 |
| abstract_inverted_index.conventional | 148 |
| abstract_inverted_index.convergence. | 131 |
| abstract_inverted_index.experimental | 133 |
| abstract_inverted_index.illumination | 67 |
| abstract_inverted_index.inconvenient | 23 |
| abstract_inverted_index.investigated | 42 |
| abstract_inverted_index.measurements | 53 |
| abstract_inverted_index.optimization | 88 |
| abstract_inverted_index.overfitting, | 124 |
| abstract_inverted_index.partitioning | 91 |
| abstract_inverted_index.performance, | 64 |
| abstract_inverted_index.computational | 191 |
| abstract_inverted_index.hyperspectral | 14 |
| abstract_inverted_index.relationships | 117 |
| abstract_inverted_index.self-learning | 106 |
| abstract_inverted_index.visualization | 189 |
| abstract_inverted_index.time-consuming | 9 |
| abstract_inverted_index.luminance-meters, | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.10113773 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |