Bayesian optimized physics-informed neural network for estimating wave propagation velocities Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.14064
In this paper, we propose a novel inverse parameter estimation approach called Bayesian optimized physics-informed neural network (BOPINN). In this study, a PINN solves the partial differential equation (PDE), whereas Bayesian optimization (BO) estimates its parameter. The proposed BOPINN estimates wave velocity associated with wave propagation PDE using a single snapshot observation. An objective function for BO is defined as the mean squared error (MSE) between the surrogate displacement field and snapshot observation. The inverse estimation capability of the proposed approach is tested in three different isotropic media with different wave velocities. From the obtained results, we have observed that BOPINN can accurately estimate wave velocities with lower MSE, even in the presence of noisy conditions. The proposed algorithm shows robust predictions in limited iterations across different runs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.14064
- https://arxiv.org/pdf/2312.14064
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390137178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390137178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.14064Digital Object Identifier
- Title
-
Bayesian optimized physics-informed neural network for estimating wave propagation velocitiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-21Full publication date if available
- Authors
-
Mahindra Rautela, S. Gopalakrishnan, J. SenthilnathList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.14064Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.14064Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.14064Direct OA link when available
- Concepts
-
Snapshot (computer storage), Isotropy, Mean squared error, Bayesian probability, Inverse problem, Artificial neural network, Algorithm, Mathematics, Applied mathematics, Physics, Computer science, Mathematical optimization, Statistics, Mathematical analysis, Machine learning, Optics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390137178 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.14064 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.14064 |
| ids.openalex | https://openalex.org/W4390137178 |
| fwci | |
| type | preprint |
| title | Bayesian optimized physics-informed neural network for estimating wave propagation velocities |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10638 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9872999787330627 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Optical measurement and interference techniques |
| topics[1].id | https://openalex.org/T14158 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9787999987602234 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optical Systems and Laser Technology |
| topics[2].id | https://openalex.org/T11583 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.975600004196167 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Advanced Measurement and Metrology Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C55282118 |
| concepts[0].level | 2 |
| concepts[0].score | 0.640643298625946 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q252683 |
| concepts[0].display_name | Snapshot (computer storage) |
| concepts[1].id | https://openalex.org/C184050105 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5890998840332031 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q273163 |
| concepts[1].display_name | Isotropy |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5492069125175476 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5341419577598572 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C135252773 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5326281189918518 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[4].display_name | Inverse problem |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4989132881164551 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4853281080722809 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39591556787490845 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3940989375114441 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.36160844564437866 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3574853837490082 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3393530249595642 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2152213454246521 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1825871765613556 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.17585131525993347 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.15403133630752563 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/snapshot |
| keywords[0].score | 0.640643298625946 |
| keywords[0].display_name | Snapshot (computer storage) |
| keywords[1].id | https://openalex.org/keywords/isotropy |
| keywords[1].score | 0.5890998840332031 |
| keywords[1].display_name | Isotropy |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.5492069125175476 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5341419577598572 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/inverse-problem |
| keywords[4].score | 0.5326281189918518 |
| keywords[4].display_name | Inverse problem |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4989132881164551 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4853281080722809 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.39591556787490845 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3940989375114441 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.36160844564437866 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3574853837490082 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.3393530249595642 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.2152213454246521 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[13].score | 0.1825871765613556 |
| keywords[13].display_name | Mathematical analysis |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.17585131525993347 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/optics |
| keywords[15].score | 0.15403133630752563 |
| keywords[15].display_name | Optics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.14064 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.14064 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.14064 |
| locations[1].id | doi:10.48550/arxiv.2312.14064 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.14064 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062519467 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2678-9682 |
| authorships[0].author.display_name | Mahindra Rautela |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rautela, Mahindra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032350542 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6165-6132 |
| authorships[1].author.display_name | S. Gopalakrishnan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gopalakrishnan, S. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083824197 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1737-7985 |
| authorships[2].author.display_name | J. Senthilnath |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Senthilnath, J. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.14064 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian optimized physics-informed neural network for estimating wave propagation velocities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10638 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9872999787330627 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Optical measurement and interference techniques |
| related_works | https://openalex.org/W2542847180, https://openalex.org/W2794789911, https://openalex.org/W3034994054, https://openalex.org/W4298134547, https://openalex.org/W2805712290, https://openalex.org/W2155226960, https://openalex.org/W2909129499, https://openalex.org/W2122976425, https://openalex.org/W2392087771, https://openalex.org/W2088773039 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.14064 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.14064 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.14064 |
| primary_location.id | pmh:oai:arXiv.org:2312.14064 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.14064 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.14064 |
| publication_date | 2023-12-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 21, 48 |
| abstract_inverted_index.An | 52 |
| abstract_inverted_index.BO | 56 |
| abstract_inverted_index.In | 0, 18 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.in | 83, 110, 122 |
| abstract_inverted_index.is | 57, 81 |
| abstract_inverted_index.of | 77, 113 |
| abstract_inverted_index.we | 3, 96 |
| abstract_inverted_index.PDE | 46 |
| abstract_inverted_index.The | 36, 73, 116 |
| abstract_inverted_index.and | 70 |
| abstract_inverted_index.can | 101 |
| abstract_inverted_index.for | 55 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.the | 24, 60, 66, 78, 93, 111 |
| abstract_inverted_index.(BO) | 32 |
| abstract_inverted_index.From | 92 |
| abstract_inverted_index.MSE, | 108 |
| abstract_inverted_index.PINN | 22 |
| abstract_inverted_index.even | 109 |
| abstract_inverted_index.have | 97 |
| abstract_inverted_index.mean | 61 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.this | 1, 19 |
| abstract_inverted_index.wave | 40, 44, 90, 104 |
| abstract_inverted_index.with | 43, 88, 106 |
| abstract_inverted_index.(MSE) | 64 |
| abstract_inverted_index.error | 63 |
| abstract_inverted_index.field | 69 |
| abstract_inverted_index.lower | 107 |
| abstract_inverted_index.media | 87 |
| abstract_inverted_index.noisy | 114 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.runs. | 127 |
| abstract_inverted_index.shows | 119 |
| abstract_inverted_index.three | 84 |
| abstract_inverted_index.using | 47 |
| abstract_inverted_index.(PDE), | 28 |
| abstract_inverted_index.BOPINN | 38, 100 |
| abstract_inverted_index.across | 125 |
| abstract_inverted_index.called | 11 |
| abstract_inverted_index.neural | 15 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.robust | 120 |
| abstract_inverted_index.single | 49 |
| abstract_inverted_index.solves | 23 |
| abstract_inverted_index.study, | 20 |
| abstract_inverted_index.tested | 82 |
| abstract_inverted_index.between | 65 |
| abstract_inverted_index.defined | 58 |
| abstract_inverted_index.inverse | 7, 74 |
| abstract_inverted_index.limited | 123 |
| abstract_inverted_index.network | 16 |
| abstract_inverted_index.partial | 25 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.squared | 62 |
| abstract_inverted_index.whereas | 29 |
| abstract_inverted_index.Bayesian | 12, 30 |
| abstract_inverted_index.approach | 10, 80 |
| abstract_inverted_index.equation | 27 |
| abstract_inverted_index.estimate | 103 |
| abstract_inverted_index.function | 54 |
| abstract_inverted_index.observed | 98 |
| abstract_inverted_index.obtained | 94 |
| abstract_inverted_index.presence | 112 |
| abstract_inverted_index.proposed | 37, 79, 117 |
| abstract_inverted_index.results, | 95 |
| abstract_inverted_index.snapshot | 50, 71 |
| abstract_inverted_index.velocity | 41 |
| abstract_inverted_index.(BOPINN). | 17 |
| abstract_inverted_index.algorithm | 118 |
| abstract_inverted_index.different | 85, 89, 126 |
| abstract_inverted_index.estimates | 33, 39 |
| abstract_inverted_index.isotropic | 86 |
| abstract_inverted_index.objective | 53 |
| abstract_inverted_index.optimized | 13 |
| abstract_inverted_index.parameter | 8 |
| abstract_inverted_index.surrogate | 67 |
| abstract_inverted_index.accurately | 102 |
| abstract_inverted_index.associated | 42 |
| abstract_inverted_index.capability | 76 |
| abstract_inverted_index.estimation | 9, 75 |
| abstract_inverted_index.iterations | 124 |
| abstract_inverted_index.parameter. | 35 |
| abstract_inverted_index.velocities | 105 |
| abstract_inverted_index.conditions. | 115 |
| abstract_inverted_index.predictions | 121 |
| abstract_inverted_index.propagation | 45 |
| abstract_inverted_index.velocities. | 91 |
| abstract_inverted_index.differential | 26 |
| abstract_inverted_index.displacement | 68 |
| abstract_inverted_index.observation. | 51, 72 |
| abstract_inverted_index.optimization | 31 |
| abstract_inverted_index.physics-informed | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |