Bayesian Signal Separation via Plug-and-Play Diffusion-Within-Gibbs Sampling Article Swipe
Yongqiang Zhang
,
Rui Guo
,
Yonina C. Eldar
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.12857
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.12857
We propose a posterior sampling algorithm for the problem of estimating multiple independent source signals from their noisy superposition. The proposed algorithm is a combination of Gibbs sampling method and plug-and-play (PnP) diffusion priors. Unlike most existing diffusion-model-based approaches for signal separation, our method allows source priors to be learned separately and flexibly combined without retraining. Moreover, under the assumption of perfect diffusion model training, the proposed method provably produces samples from the posterior distribution. Experiments on the task of heartbeat extraction from mixtures with synthetic motion artifacts demonstrate the superior performance of our method over existing approaches.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.12857
- https://arxiv.org/pdf/2509.12857
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415317148
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415317148Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.12857Digital Object Identifier
- Title
-
Bayesian Signal Separation via Plug-and-Play Diffusion-Within-Gibbs SamplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-16Full publication date if available
- Authors
-
Yongqiang Zhang, Rui Guo, Yonina C. EldarList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.12857Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.12857Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.12857Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415317148 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.12857 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.12857 |
| ids.openalex | https://openalex.org/W4415317148 |
| fwci | |
| type | preprint |
| title | Bayesian Signal Separation via Plug-and-Play Diffusion-Within-Gibbs Sampling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9907000064849854 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9369000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T11901 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.926800012588501 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Methods and Mixture Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.12857 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.12857 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.12857 |
| locations[1].id | doi:10.48550/arxiv.2509.12857 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.12857 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023977235 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3562-2323 |
| authorships[0].author.display_name | Yongqiang Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Yi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044309135 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1868-8010 |
| authorships[1].author.display_name | Rui Guo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guo, Rui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005913897 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4358-5304 |
| authorships[2].author.display_name | Yonina C. Eldar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Eldar, Yonina C. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.12857 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Bayesian Signal Separation via Plug-and-Play Diffusion-Within-Gibbs Sampling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9907000064849854 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.12857 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.12857 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.12857 |
| primary_location.id | pmh:oai:arXiv.org:2509.12857 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.12857 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.12857 |
| publication_date | 2025-09-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 23 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.be | 48 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.of | 9, 25, 60, 79, 92 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 47 |
| abstract_inverted_index.The | 19 |
| abstract_inverted_index.and | 29, 51 |
| abstract_inverted_index.for | 6, 39 |
| abstract_inverted_index.our | 42, 93 |
| abstract_inverted_index.the | 7, 58, 65, 72, 77, 89 |
| abstract_inverted_index.from | 15, 71, 82 |
| abstract_inverted_index.most | 35 |
| abstract_inverted_index.over | 95 |
| abstract_inverted_index.task | 78 |
| abstract_inverted_index.with | 84 |
| abstract_inverted_index.(PnP) | 31 |
| abstract_inverted_index.Gibbs | 26 |
| abstract_inverted_index.model | 63 |
| abstract_inverted_index.noisy | 17 |
| abstract_inverted_index.their | 16 |
| abstract_inverted_index.under | 57 |
| abstract_inverted_index.Unlike | 34 |
| abstract_inverted_index.allows | 44 |
| abstract_inverted_index.method | 28, 43, 67, 94 |
| abstract_inverted_index.motion | 86 |
| abstract_inverted_index.priors | 46 |
| abstract_inverted_index.signal | 40 |
| abstract_inverted_index.source | 13, 45 |
| abstract_inverted_index.learned | 49 |
| abstract_inverted_index.perfect | 61 |
| abstract_inverted_index.priors. | 33 |
| abstract_inverted_index.problem | 8 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.samples | 70 |
| abstract_inverted_index.signals | 14 |
| abstract_inverted_index.without | 54 |
| abstract_inverted_index.combined | 53 |
| abstract_inverted_index.existing | 36, 96 |
| abstract_inverted_index.flexibly | 52 |
| abstract_inverted_index.mixtures | 83 |
| abstract_inverted_index.multiple | 11 |
| abstract_inverted_index.produces | 69 |
| abstract_inverted_index.proposed | 20, 66 |
| abstract_inverted_index.provably | 68 |
| abstract_inverted_index.sampling | 4, 27 |
| abstract_inverted_index.superior | 90 |
| abstract_inverted_index.Moreover, | 56 |
| abstract_inverted_index.algorithm | 5, 21 |
| abstract_inverted_index.artifacts | 87 |
| abstract_inverted_index.diffusion | 32, 62 |
| abstract_inverted_index.heartbeat | 80 |
| abstract_inverted_index.posterior | 3, 73 |
| abstract_inverted_index.synthetic | 85 |
| abstract_inverted_index.training, | 64 |
| abstract_inverted_index.approaches | 38 |
| abstract_inverted_index.assumption | 59 |
| abstract_inverted_index.estimating | 10 |
| abstract_inverted_index.extraction | 81 |
| abstract_inverted_index.separately | 50 |
| abstract_inverted_index.Experiments | 75 |
| abstract_inverted_index.approaches. | 97 |
| abstract_inverted_index.combination | 24 |
| abstract_inverted_index.demonstrate | 88 |
| abstract_inverted_index.independent | 12 |
| abstract_inverted_index.performance | 91 |
| abstract_inverted_index.retraining. | 55 |
| abstract_inverted_index.separation, | 41 |
| abstract_inverted_index.distribution. | 74 |
| abstract_inverted_index.plug-and-play | 30 |
| abstract_inverted_index.superposition. | 18 |
| abstract_inverted_index.diffusion-model-based | 37 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |