Bayesian Spatial Modeling of Childhood Overweight and Obesity Prevalence in Costa Rica Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2274291/v1
Background: Childhood overweight and obesity levels are rising and becoming a concern globally. In Costa Rica, the prevalence of these conditions has reached alarming levels. Spatial analyses showing geographical patterns and risk factors are required to develop tailored and effective public health actions. Methods: A Bayesian spatial mixed model was built to understand the geographic patterns of childhood overweight and obesity prevalence in Costa Rica and their association with some socioeconomic factors. Data was obtained from the 2016 Weight and Size Census (school age children) and 2011 National Census. Results: Average years of schooling increase the levels of overweight and obesity until reaching an approximate value of 8, then, they start to decrease. Besides, for every 10-point increment in the percentage of homes with difficulties to cover their basic needs and in the percentage of population under 14 years old, there is a decrease of 8 and 15 points, respectively, in the odds of obesity.Spatial patterns show higher values of prevalence in the center area of the country, touristic destinations, head of province districts and in the borders with Panama. Conclutions: Especially for childhood obesity, the average years of schooling is a non-linear factor, describing a Kuznets curve phenomenon. Lower percentages of households in poverty and population under 14 years old are slightly associated with higher levels of obesity. Districts with high commercial and touristic activity present higher risk of prevalence.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2274291/v1
- https://www.researchsquare.com/article/rs-2274291/latest.pdf
- OA Status
- green
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311556643
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311556643Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2274291/v1Digital Object Identifier
- Title
-
Bayesian Spatial Modeling of Childhood Overweight and Obesity Prevalence in Costa RicaWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-15Full publication date if available
- Authors
-
Mario J. Gómez, Luis A. Barboza, Paola Vásquez, Paula MoragaList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2274291/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2274291/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2274291/latest.pdfDirect OA link when available
- Concepts
-
Overweight, Obesity, Geography, Demography, Population, Census, Socioeconomic status, Childhood obesity, Poverty, Medicine, Odds, Public health, Environmental health, Logistic regression, Economic growth, Nursing, Internal medicine, Economics, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311556643 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2274291/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2274291/v1 |
| ids.openalex | https://openalex.org/W4311556643 |
| fwci | 0.0 |
| type | preprint |
| title | Bayesian Spatial Modeling of Childhood Overweight and Obesity Prevalence in Costa Rica |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13861 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9696000218391418 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3600 |
| topics[0].subfield.display_name | General Health Professions |
| topics[0].display_name | Health and Lifestyle Studies |
| topics[1].id | https://openalex.org/T10010 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9664000272750854 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Obesity, Physical Activity, Diet |
| topics[2].id | https://openalex.org/T12816 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9366000294685364 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1407 |
| topics[2].subfield.display_name | Organizational Behavior and Human Resource Management |
| topics[2].display_name | Global Public Health Policies and Epidemiology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780586474 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8057105541229248 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q332428 |
| concepts[0].display_name | Overweight |
| concepts[1].id | https://openalex.org/C511355011 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6773647665977478 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12174 |
| concepts[1].display_name | Obesity |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6222542524337769 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C149923435 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6040118932723999 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[3].display_name | Demography |
| concepts[4].id | https://openalex.org/C2908647359 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5522249341011047 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[4].display_name | Population |
| concepts[5].id | https://openalex.org/C52130261 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5443742275238037 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q39825 |
| concepts[5].display_name | Census |
| concepts[6].id | https://openalex.org/C147077947 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5255165100097656 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1515895 |
| concepts[6].display_name | Socioeconomic status |
| concepts[7].id | https://openalex.org/C2779422640 |
| concepts[7].level | 4 |
| concepts[7].score | 0.5212553143501282 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3241451 |
| concepts[7].display_name | Childhood obesity |
| concepts[8].id | https://openalex.org/C189326681 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4622909724712372 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10294 |
| concepts[8].display_name | Poverty |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.43829184770584106 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C143095724 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4294111728668213 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q515895 |
| concepts[10].display_name | Odds |
| concepts[11].id | https://openalex.org/C138816342 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42044597864151 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[11].display_name | Public health |
| concepts[12].id | https://openalex.org/C99454951 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40309107303619385 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[12].display_name | Environmental health |
| concepts[13].id | https://openalex.org/C151956035 |
| concepts[13].level | 2 |
| concepts[13].score | 0.32598641514778137 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[13].display_name | Logistic regression |
| concepts[14].id | https://openalex.org/C50522688 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10346168279647827 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[14].display_name | Economic growth |
| concepts[15].id | https://openalex.org/C159110408 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[15].display_name | Nursing |
| concepts[16].id | https://openalex.org/C126322002 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[16].display_name | Internal medicine |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C144024400 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[18].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/overweight |
| keywords[0].score | 0.8057105541229248 |
| keywords[0].display_name | Overweight |
| keywords[1].id | https://openalex.org/keywords/obesity |
| keywords[1].score | 0.6773647665977478 |
| keywords[1].display_name | Obesity |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.6222542524337769 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/demography |
| keywords[3].score | 0.6040118932723999 |
| keywords[3].display_name | Demography |
| keywords[4].id | https://openalex.org/keywords/population |
| keywords[4].score | 0.5522249341011047 |
| keywords[4].display_name | Population |
| keywords[5].id | https://openalex.org/keywords/census |
| keywords[5].score | 0.5443742275238037 |
| keywords[5].display_name | Census |
| keywords[6].id | https://openalex.org/keywords/socioeconomic-status |
| keywords[6].score | 0.5255165100097656 |
| keywords[6].display_name | Socioeconomic status |
| keywords[7].id | https://openalex.org/keywords/childhood-obesity |
| keywords[7].score | 0.5212553143501282 |
| keywords[7].display_name | Childhood obesity |
| keywords[8].id | https://openalex.org/keywords/poverty |
| keywords[8].score | 0.4622909724712372 |
| keywords[8].display_name | Poverty |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.43829184770584106 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/odds |
| keywords[10].score | 0.4294111728668213 |
| keywords[10].display_name | Odds |
| keywords[11].id | https://openalex.org/keywords/public-health |
| keywords[11].score | 0.42044597864151 |
| keywords[11].display_name | Public health |
| keywords[12].id | https://openalex.org/keywords/environmental-health |
| keywords[12].score | 0.40309107303619385 |
| keywords[12].display_name | Environmental health |
| keywords[13].id | https://openalex.org/keywords/logistic-regression |
| keywords[13].score | 0.32598641514778137 |
| keywords[13].display_name | Logistic regression |
| keywords[14].id | https://openalex.org/keywords/economic-growth |
| keywords[14].score | 0.10346168279647827 |
| keywords[14].display_name | Economic growth |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2274291/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2274291/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2274291/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034535997 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5167-6620 |
| authorships[0].author.display_name | Mario J. Gómez |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I71920554 |
| authorships[0].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mario J. Gómez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5044189147 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7009-5207 |
| authorships[1].author.display_name | Luis A. Barboza |
| authorships[1].countries | CR, YE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31944674 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Costa Rica |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I118692353 |
| authorships[1].affiliations[1].raw_affiliation_string | University of Science and Technology Research |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I118692353 |
| authorships[1].affiliations[2].raw_affiliation_string | University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I31944674 |
| authorships[1].institutions[0].ror | https://ror.org/02yzgww51 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31944674 |
| authorships[1].institutions[0].country_code | CR |
| authorships[1].institutions[0].display_name | Universidad de Costa Rica |
| authorships[1].institutions[1].id | https://openalex.org/I118692353 |
| authorships[1].institutions[1].ror | https://ror.org/05bj7sh33 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I118692353 |
| authorships[1].institutions[1].country_code | YE |
| authorships[1].institutions[1].display_name | University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luis A. Barboza |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Costa Rica, University of Science and Technology, University of Science and Technology Research |
| authorships[2].author.id | https://openalex.org/A5102487387 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Paola Vásquez |
| authorships[2].countries | CR, YE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118692353 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Science and Technology |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I31944674 |
| authorships[2].affiliations[1].raw_affiliation_string | University of Costa Rica |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I118692353 |
| authorships[2].affiliations[2].raw_affiliation_string | University of Science and Technology Research |
| authorships[2].institutions[0].id | https://openalex.org/I31944674 |
| authorships[2].institutions[0].ror | https://ror.org/02yzgww51 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I31944674 |
| authorships[2].institutions[0].country_code | CR |
| authorships[2].institutions[0].display_name | Universidad de Costa Rica |
| authorships[2].institutions[1].id | https://openalex.org/I118692353 |
| authorships[2].institutions[1].ror | https://ror.org/05bj7sh33 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I118692353 |
| authorships[2].institutions[1].country_code | YE |
| authorships[2].institutions[1].display_name | University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paola Vásquez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Costa Rica, University of Science and Technology, University of Science and Technology Research |
| authorships[3].author.id | https://openalex.org/A5017454897 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5266-0201 |
| authorships[3].author.display_name | Paula Moraga |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I71920554 |
| authorships[3].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Paula Moraga |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2274291/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Spatial Modeling of Childhood Overweight and Obesity Prevalence in Costa Rica |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13861 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9696000218391418 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3600 |
| primary_topic.subfield.display_name | General Health Professions |
| primary_topic.display_name | Health and Lifestyle Studies |
| related_works | https://openalex.org/W2128472366, https://openalex.org/W1512152715, https://openalex.org/W621243299, https://openalex.org/W5594354, https://openalex.org/W1922010488, https://openalex.org/W2601163983, https://openalex.org/W2364090708, https://openalex.org/W2089958248, https://openalex.org/W4244351752, https://openalex.org/W2086074141 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2274291/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2274291/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2274291/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2274291/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2274291/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2274291/v1 |
| publication_date | 2022-12-15 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2111889059, https://openalex.org/W2574519416, https://openalex.org/W4241726285, https://openalex.org/W2412831491, https://openalex.org/W3091945782, https://openalex.org/W2169236994, https://openalex.org/W3048836142, https://openalex.org/W1598890398, https://openalex.org/W6680896225, https://openalex.org/W2947602156, https://openalex.org/W2948648355, https://openalex.org/W2612586828, https://openalex.org/W2513850362, https://openalex.org/W4213176465, https://openalex.org/W1487139063, https://openalex.org/W2343968360, https://openalex.org/W4229766664, https://openalex.org/W6869699453, https://openalex.org/W1973822752, https://openalex.org/W2079838937, https://openalex.org/W6611801733, https://openalex.org/W1496296596, https://openalex.org/W3128238938, https://openalex.org/W4237967735, https://openalex.org/W2887606427, https://openalex.org/W2582743722, https://openalex.org/W2999429201, https://openalex.org/W4245672031, https://openalex.org/W2117076645, https://openalex.org/W2144898279, https://openalex.org/W1998962294, https://openalex.org/W2044379852, https://openalex.org/W4399638148, https://openalex.org/W2914511981, https://openalex.org/W2168647804, https://openalex.org/W4214691949, https://openalex.org/W4237908287, https://openalex.org/W2149176865, https://openalex.org/W2330391431, https://openalex.org/W1979711356, https://openalex.org/W2139215620 |
| referenced_works_count | 41 |
| abstract_inverted_index.8 | 146 |
| abstract_inverted_index.A | 45 |
| abstract_inverted_index.a | 11, 143, 192, 196 |
| abstract_inverted_index.14 | 138, 209 |
| abstract_inverted_index.15 | 148 |
| abstract_inverted_index.8, | 108 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.in | 63, 119, 132, 151, 162, 176, 204 |
| abstract_inverted_index.is | 142, 191 |
| abstract_inverted_index.of | 19, 57, 93, 98, 107, 122, 135, 145, 154, 160, 166, 172, 189, 202, 218, 230 |
| abstract_inverted_index.to | 36, 52, 112, 126 |
| abstract_inverted_index.age | 84 |
| abstract_inverted_index.and | 4, 9, 31, 39, 60, 66, 80, 86, 100, 131, 147, 175, 206, 224 |
| abstract_inverted_index.are | 7, 34, 212 |
| abstract_inverted_index.for | 115, 183 |
| abstract_inverted_index.has | 22 |
| abstract_inverted_index.old | 211 |
| abstract_inverted_index.the | 17, 54, 77, 96, 120, 133, 152, 163, 167, 177, 186 |
| abstract_inverted_index.was | 50, 74 |
| abstract_inverted_index.2011 | 87 |
| abstract_inverted_index.2016 | 78 |
| abstract_inverted_index.Data | 73 |
| abstract_inverted_index.Rica | 65 |
| abstract_inverted_index.Size | 81 |
| abstract_inverted_index.area | 165 |
| abstract_inverted_index.from | 76 |
| abstract_inverted_index.head | 171 |
| abstract_inverted_index.high | 222 |
| abstract_inverted_index.odds | 153 |
| abstract_inverted_index.old, | 140 |
| abstract_inverted_index.risk | 32, 229 |
| abstract_inverted_index.show | 157 |
| abstract_inverted_index.some | 70 |
| abstract_inverted_index.they | 110 |
| abstract_inverted_index.with | 69, 124, 179, 215, 221 |
| abstract_inverted_index.Costa | 15, 64 |
| abstract_inverted_index.Lower | 200 |
| abstract_inverted_index.Rica, | 16 |
| abstract_inverted_index.basic | 129 |
| abstract_inverted_index.built | 51 |
| abstract_inverted_index.cover | 127 |
| abstract_inverted_index.curve | 198 |
| abstract_inverted_index.every | 116 |
| abstract_inverted_index.homes | 123 |
| abstract_inverted_index.mixed | 48 |
| abstract_inverted_index.model | 49 |
| abstract_inverted_index.needs | 130 |
| abstract_inverted_index.start | 111 |
| abstract_inverted_index.their | 67, 128 |
| abstract_inverted_index.then, | 109 |
| abstract_inverted_index.there | 141 |
| abstract_inverted_index.these | 20 |
| abstract_inverted_index.under | 137, 208 |
| abstract_inverted_index.until | 102 |
| abstract_inverted_index.value | 106 |
| abstract_inverted_index.years | 92, 139, 188, 210 |
| abstract_inverted_index.Census | 82 |
| abstract_inverted_index.Weight | 79 |
| abstract_inverted_index.center | 164 |
| abstract_inverted_index.health | 42 |
| abstract_inverted_index.higher | 158, 216, 228 |
| abstract_inverted_index.levels | 6, 97, 217 |
| abstract_inverted_index.public | 41 |
| abstract_inverted_index.rising | 8 |
| abstract_inverted_index.values | 159 |
| abstract_inverted_index.(school | 83 |
| abstract_inverted_index.Average | 91 |
| abstract_inverted_index.Census. | 89 |
| abstract_inverted_index.Kuznets | 197 |
| abstract_inverted_index.Panama. | 180 |
| abstract_inverted_index.Spatial | 26 |
| abstract_inverted_index.average | 187 |
| abstract_inverted_index.borders | 178 |
| abstract_inverted_index.concern | 12 |
| abstract_inverted_index.develop | 37 |
| abstract_inverted_index.factor, | 194 |
| abstract_inverted_index.factors | 33 |
| abstract_inverted_index.levels. | 25 |
| abstract_inverted_index.obesity | 5, 61, 101 |
| abstract_inverted_index.points, | 149 |
| abstract_inverted_index.poverty | 205 |
| abstract_inverted_index.present | 227 |
| abstract_inverted_index.reached | 23 |
| abstract_inverted_index.showing | 28 |
| abstract_inverted_index.spatial | 47 |
| abstract_inverted_index.10-point | 117 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 46 |
| abstract_inverted_index.Besides, | 114 |
| abstract_inverted_index.Methods: | 44 |
| abstract_inverted_index.National | 88 |
| abstract_inverted_index.Results: | 90 |
| abstract_inverted_index.actions. | 43 |
| abstract_inverted_index.activity | 226 |
| abstract_inverted_index.alarming | 24 |
| abstract_inverted_index.analyses | 27 |
| abstract_inverted_index.becoming | 10 |
| abstract_inverted_index.country, | 168 |
| abstract_inverted_index.decrease | 144 |
| abstract_inverted_index.factors. | 72 |
| abstract_inverted_index.increase | 95 |
| abstract_inverted_index.obesity, | 185 |
| abstract_inverted_index.obesity. | 219 |
| abstract_inverted_index.obtained | 75 |
| abstract_inverted_index.patterns | 30, 56, 156 |
| abstract_inverted_index.province | 173 |
| abstract_inverted_index.reaching | 103 |
| abstract_inverted_index.required | 35 |
| abstract_inverted_index.slightly | 213 |
| abstract_inverted_index.tailored | 38 |
| abstract_inverted_index.Childhood | 2 |
| abstract_inverted_index.Districts | 220 |
| abstract_inverted_index.childhood | 58, 184 |
| abstract_inverted_index.children) | 85 |
| abstract_inverted_index.decrease. | 113 |
| abstract_inverted_index.districts | 174 |
| abstract_inverted_index.effective | 40 |
| abstract_inverted_index.globally. | 13 |
| abstract_inverted_index.increment | 118 |
| abstract_inverted_index.schooling | 94, 190 |
| abstract_inverted_index.touristic | 169, 225 |
| abstract_inverted_index.Especially | 182 |
| abstract_inverted_index.associated | 214 |
| abstract_inverted_index.commercial | 223 |
| abstract_inverted_index.conditions | 21 |
| abstract_inverted_index.describing | 195 |
| abstract_inverted_index.geographic | 55 |
| abstract_inverted_index.households | 203 |
| abstract_inverted_index.non-linear | 193 |
| abstract_inverted_index.overweight | 3, 59, 99 |
| abstract_inverted_index.percentage | 121, 134 |
| abstract_inverted_index.population | 136, 207 |
| abstract_inverted_index.prevalence | 18, 62, 161 |
| abstract_inverted_index.understand | 53 |
| abstract_inverted_index.Background: | 1 |
| abstract_inverted_index.approximate | 105 |
| abstract_inverted_index.association | 68 |
| abstract_inverted_index.percentages | 201 |
| abstract_inverted_index.phenomenon. | 199 |
| abstract_inverted_index.prevalence. | 231 |
| abstract_inverted_index.Conclutions: | 181 |
| abstract_inverted_index.difficulties | 125 |
| abstract_inverted_index.geographical | 29 |
| abstract_inverted_index.destinations, | 170 |
| abstract_inverted_index.respectively, | 150 |
| abstract_inverted_index.socioeconomic | 71 |
| abstract_inverted_index.obesity.Spatial | 155 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.27385046 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |