Bayesian Systemic Risk Analysis using Latent Space Network Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/26941899.2024.2381724
In financial markets, systemic risk is a type of risk in which the failure of one stock in the market triggers a sequence of failures. Our study proposes a Bayesian decision scheme to dynamically monitor systemic risk under any preferences and restrictions in financial risk management. We begin by capturing the moving correlations of stock returns because such correlations represent the strengths of the relationships among stocks. Then, we construct a dynamic financial network to link the stocks with strong relationships. Using the financial space, which is related to the position of stocks in the network plot, we locate two stocks in the financial space that are a short distance apart, because the relationship between these two stocks is strong. Using the distances between stocks in the financial space, together with the salient preferences and restrictions in financial risk management, we propose a systemic risk score. We then use 20 years of data to demonstrate the effectiveness of our proposed systemic risk score to give an early signal of global financial instabilities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/26941899.2024.2381724
- https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=true
- OA Status
- diamond
- References
- 86
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401148943
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401148943Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/26941899.2024.2381724Digital Object Identifier
- Title
-
Bayesian Systemic Risk Analysis using Latent Space Network ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-30Full publication date if available
- Authors
-
Mike K. P. So, Thomas W. C. Chan, Amanda M. Y. ChuList of authors in order
- Landing page
-
https://doi.org/10.1080/26941899.2024.2381724Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=trueDirect OA link when available
- Concepts
-
Systemic risk, Stock (firearms), Financial risk management, Risk management, Financial market, Econometrics, Financial risk, Stock market, Financial networks, Bayesian network, Salient, Business, Actuarial science, Finance, Economics, Financial economics, Computer science, Artificial intelligence, Financial crisis, Geography, Context (archaeology), Macroeconomics, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401148943 |
|---|---|
| doi | https://doi.org/10.1080/26941899.2024.2381724 |
| ids.doi | https://doi.org/10.1080/26941899.2024.2381724 |
| ids.openalex | https://openalex.org/W4401148943 |
| fwci | 0.0 |
| type | article |
| title | Bayesian Systemic Risk Analysis using Latent Space Network Models |
| awards[0].id | https://openalex.org/G8414184407 |
| awards[0].funder_id | https://openalex.org/F4320323537 |
| awards[0].display_name | |
| awards[0].funder_award_id | SBMDF21BM07 |
| awards[0].funder_display_name | Hong Kong University of Science and Technology |
| awards[1].id | https://openalex.org/G1853862288 |
| awards[1].funder_id | https://openalex.org/F4320321592 |
| awards[1].display_name | |
| awards[1].funder_award_id | T31-604/18-N |
| awards[1].funder_display_name | Research Grants Council, University Grants Committee |
| biblio.issue | 1 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11270 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Complex Systems and Time Series Analysis |
| topics[1].id | https://openalex.org/T11059 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Market Dynamics and Volatility |
| topics[2].id | https://openalex.org/T10282 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9854999780654907 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Financial Risk and Volatility Modeling |
| funders[0].id | https://openalex.org/F4320321592 |
| funders[0].ror | https://ror.org/00djwmt25 |
| funders[0].display_name | Research Grants Council, University Grants Committee |
| funders[1].id | https://openalex.org/F4320323537 |
| funders[1].ror | https://ror.org/00q4vv597 |
| funders[1].display_name | Hong Kong University of Science and Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C144587487 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9012218117713928 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369234 |
| concepts[0].display_name | Systemic risk |
| concepts[1].id | https://openalex.org/C204036174 |
| concepts[1].level | 2 |
| concepts[1].score | 0.544409453868866 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[1].display_name | Stock (firearms) |
| concepts[2].id | https://openalex.org/C43071985 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5232426524162292 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2906013 |
| concepts[2].display_name | Financial risk management |
| concepts[3].id | https://openalex.org/C32896092 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5028026103973389 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189447 |
| concepts[3].display_name | Risk management |
| concepts[4].id | https://openalex.org/C19244329 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4946393668651581 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208697 |
| concepts[4].display_name | Financial market |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.478086918592453 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C76073288 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46550849080085754 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1337875 |
| concepts[6].display_name | Financial risk |
| concepts[7].id | https://openalex.org/C2780299701 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4543338418006897 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[7].display_name | Stock market |
| concepts[8].id | https://openalex.org/C2776760741 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4470396935939789 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25325235 |
| concepts[8].display_name | Financial networks |
| concepts[9].id | https://openalex.org/C33724603 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42643123865127563 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[9].display_name | Bayesian network |
| concepts[10].id | https://openalex.org/C2780719617 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4172399640083313 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[10].display_name | Salient |
| concepts[11].id | https://openalex.org/C144133560 |
| concepts[11].level | 0 |
| concepts[11].score | 0.38604485988616943 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[11].display_name | Business |
| concepts[12].id | https://openalex.org/C162118730 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3789251446723938 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1128453 |
| concepts[12].display_name | Actuarial science |
| concepts[13].id | https://openalex.org/C10138342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35532498359680176 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[13].display_name | Finance |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.33846521377563477 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C106159729 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3236372470855713 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[15].display_name | Financial economics |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.3001897633075714 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1768832504749298 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C2778300220 |
| concepts[18].level | 2 |
| concepts[18].score | 0.16642531752586365 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q114380 |
| concepts[18].display_name | Financial crisis |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.15094122290611267 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C2779343474 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[20].display_name | Context (archaeology) |
| concepts[21].id | https://openalex.org/C139719470 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[21].display_name | Macroeconomics |
| concepts[22].id | https://openalex.org/C166957645 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[22].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/systemic-risk |
| keywords[0].score | 0.9012218117713928 |
| keywords[0].display_name | Systemic risk |
| keywords[1].id | https://openalex.org/keywords/stock |
| keywords[1].score | 0.544409453868866 |
| keywords[1].display_name | Stock (firearms) |
| keywords[2].id | https://openalex.org/keywords/financial-risk-management |
| keywords[2].score | 0.5232426524162292 |
| keywords[2].display_name | Financial risk management |
| keywords[3].id | https://openalex.org/keywords/risk-management |
| keywords[3].score | 0.5028026103973389 |
| keywords[3].display_name | Risk management |
| keywords[4].id | https://openalex.org/keywords/financial-market |
| keywords[4].score | 0.4946393668651581 |
| keywords[4].display_name | Financial market |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.478086918592453 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/financial-risk |
| keywords[6].score | 0.46550849080085754 |
| keywords[6].display_name | Financial risk |
| keywords[7].id | https://openalex.org/keywords/stock-market |
| keywords[7].score | 0.4543338418006897 |
| keywords[7].display_name | Stock market |
| keywords[8].id | https://openalex.org/keywords/financial-networks |
| keywords[8].score | 0.4470396935939789 |
| keywords[8].display_name | Financial networks |
| keywords[9].id | https://openalex.org/keywords/bayesian-network |
| keywords[9].score | 0.42643123865127563 |
| keywords[9].display_name | Bayesian network |
| keywords[10].id | https://openalex.org/keywords/salient |
| keywords[10].score | 0.4172399640083313 |
| keywords[10].display_name | Salient |
| keywords[11].id | https://openalex.org/keywords/business |
| keywords[11].score | 0.38604485988616943 |
| keywords[11].display_name | Business |
| keywords[12].id | https://openalex.org/keywords/actuarial-science |
| keywords[12].score | 0.3789251446723938 |
| keywords[12].display_name | Actuarial science |
| keywords[13].id | https://openalex.org/keywords/finance |
| keywords[13].score | 0.35532498359680176 |
| keywords[13].display_name | Finance |
| keywords[14].id | https://openalex.org/keywords/economics |
| keywords[14].score | 0.33846521377563477 |
| keywords[14].display_name | Economics |
| keywords[15].id | https://openalex.org/keywords/financial-economics |
| keywords[15].score | 0.3236372470855713 |
| keywords[15].display_name | Financial economics |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.3001897633075714 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[17].score | 0.1768832504749298 |
| keywords[17].display_name | Artificial intelligence |
| keywords[18].id | https://openalex.org/keywords/financial-crisis |
| keywords[18].score | 0.16642531752586365 |
| keywords[18].display_name | Financial crisis |
| keywords[19].id | https://openalex.org/keywords/geography |
| keywords[19].score | 0.15094122290611267 |
| keywords[19].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1080/26941899.2024.2381724 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387280382 |
| locations[0].source.issn | 2694-1899 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2694-1899 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Data Science in Science |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Data Science in Science |
| locations[0].landing_page_url | https://doi.org/10.1080/26941899.2024.2381724 |
| locations[1].id | pmh:oai:doaj.org/article:bf7e4aaebd0041028696ae82f75084d8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Data Science in Science, Vol 3, Iss 1 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/bf7e4aaebd0041028696ae82f75084d8 |
| locations[2].id | pmh:oai:repository.hkust.edu.hk:1783.1-147221 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://repository.hkust.edu.hk/ir/Record/1783.1-147221 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061166145 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0781-8166 |
| authorships[0].author.display_name | Mike K. P. So |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong |
| authorships[0].institutions[0].id | https://openalex.org/I200769079 |
| authorships[0].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I889458895 |
| authorships[0].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mike K. P. So |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong |
| authorships[1].author.id | https://openalex.org/A5024386433 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3412-4234 |
| authorships[1].author.display_name | Thomas W. C. Chan |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong |
| authorships[1].institutions[0].id | https://openalex.org/I200769079 |
| authorships[1].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I889458895 |
| authorships[1].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[1].institutions[1].country_code | HK |
| authorships[1].institutions[1].display_name | University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thomas W. C. Chan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong |
| authorships[2].author.id | https://openalex.org/A5069990345 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9543-747X |
| authorships[2].author.display_name | Amanda M. Y. Chu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210086892 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Social Sciences and Policy Studies, The Education University of Hong Kong, Tai Po, Hong Kong |
| authorships[2].institutions[0].id | https://openalex.org/I4210086892 |
| authorships[2].institutions[0].ror | https://ror.org/000t0f062 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210086892 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Education University of Hong Kong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Amanda M. Y. Chu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Social Sciences and Policy Studies, The Education University of Hong Kong, Tai Po, Hong Kong |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=true |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Bayesian Systemic Risk Analysis using Latent Space Network Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11270 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Complex Systems and Time Series Analysis |
| related_works | https://openalex.org/W2599297339, https://openalex.org/W2160164079, https://openalex.org/W2991205285, https://openalex.org/W2092608298, https://openalex.org/W3013479509, https://openalex.org/W2582357226, https://openalex.org/W3201520104, https://openalex.org/W3142757135, https://openalex.org/W3041131995, https://openalex.org/W3122571444 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1080/26941899.2024.2381724 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387280382 |
| best_oa_location.source.issn | 2694-1899 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2694-1899 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Data Science in Science |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Data Science in Science |
| best_oa_location.landing_page_url | https://doi.org/10.1080/26941899.2024.2381724 |
| primary_location.id | doi:10.1080/26941899.2024.2381724 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387280382 |
| primary_location.source.issn | 2694-1899 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2694-1899 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Data Science in Science |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/26941899.2024.2381724?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Data Science in Science |
| primary_location.landing_page_url | https://doi.org/10.1080/26941899.2024.2381724 |
| publication_date | 2024-07-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3121921065, https://openalex.org/W3124317733, https://openalex.org/W4230327943, https://openalex.org/W4246715751, https://openalex.org/W2013909417, https://openalex.org/W4304136791, https://openalex.org/W2075655242, https://openalex.org/W4323267933, https://openalex.org/W1992709202, https://openalex.org/W2117899923, https://openalex.org/W3121664163, https://openalex.org/W2018774252, https://openalex.org/W3121560716, https://openalex.org/W3123933399, https://openalex.org/W2297644875, https://openalex.org/W3122471459, https://openalex.org/W3126113144, https://openalex.org/W3125841019, https://openalex.org/W4317567518, https://openalex.org/W2147981167, https://openalex.org/W2972341183, https://openalex.org/W1570515701, https://openalex.org/W3137246182, https://openalex.org/W4386498393, https://openalex.org/W3032312400, https://openalex.org/W3141001607, https://openalex.org/W3125495063, https://openalex.org/W2141902561, https://openalex.org/W2112035606, https://openalex.org/W3020982786, https://openalex.org/W3125664444, https://openalex.org/W3207065730, https://openalex.org/W3125476236, https://openalex.org/W2030911724, https://openalex.org/W2742276251, https://openalex.org/W2295669984, https://openalex.org/W2107092366, https://openalex.org/W3121823203, https://openalex.org/W2037102228, https://openalex.org/W2935854497, https://openalex.org/W3124066230, https://openalex.org/W2123423040, https://openalex.org/W3123999895, https://openalex.org/W6682184547, https://openalex.org/W1964405426, https://openalex.org/W2066459332, https://openalex.org/W3104803997, https://openalex.org/W2035996732, https://openalex.org/W3187928984, https://openalex.org/W2545679425, https://openalex.org/W3124088450, https://openalex.org/W3108266956, https://openalex.org/W2767327223, https://openalex.org/W6680456232, https://openalex.org/W3107759495, https://openalex.org/W2963461859, https://openalex.org/W2611011638, https://openalex.org/W2070108273, https://openalex.org/W2547645046, https://openalex.org/W3119041925, https://openalex.org/W3122506872, https://openalex.org/W1549853756, https://openalex.org/W2950838466, https://openalex.org/W3122043753, https://openalex.org/W2128160875, https://openalex.org/W2087409009, https://openalex.org/W3138343239, https://openalex.org/W3167658511, https://openalex.org/W3033219375, https://openalex.org/W3108550559, https://openalex.org/W3177333053, https://openalex.org/W4212860010, https://openalex.org/W3021677987, https://openalex.org/W1969828235, https://openalex.org/W2241368559, https://openalex.org/W4220814998, https://openalex.org/W2108400301, https://openalex.org/W2031228804, https://openalex.org/W2593136423, https://openalex.org/W3094140700, https://openalex.org/W4205335145, https://openalex.org/W3122572042, https://openalex.org/W4206334857, https://openalex.org/W2951416778, https://openalex.org/W2954440301, https://openalex.org/W3102824770 |
| referenced_works_count | 86 |
| abstract_inverted_index.a | 6, 21, 28, 70, 107, 142 |
| abstract_inverted_index.20 | 149 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 46, 146 |
| abstract_inverted_index.an | 165 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 10, 17, 42, 93, 101, 125, 136 |
| abstract_inverted_index.is | 5, 86, 118 |
| abstract_inverted_index.of | 8, 14, 23, 53, 62, 91, 151, 157, 168 |
| abstract_inverted_index.to | 32, 74, 88, 153, 163 |
| abstract_inverted_index.we | 68, 97, 140 |
| abstract_inverted_index.Our | 25 |
| abstract_inverted_index.and | 40, 134 |
| abstract_inverted_index.any | 38 |
| abstract_inverted_index.are | 106 |
| abstract_inverted_index.one | 15 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 12, 18, 50, 60, 63, 76, 82, 89, 94, 102, 112, 121, 126, 131, 155 |
| abstract_inverted_index.two | 99, 116 |
| abstract_inverted_index.use | 148 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.give | 164 |
| abstract_inverted_index.link | 75 |
| abstract_inverted_index.risk | 4, 9, 36, 44, 138, 144, 161 |
| abstract_inverted_index.such | 57 |
| abstract_inverted_index.that | 105 |
| abstract_inverted_index.then | 147 |
| abstract_inverted_index.type | 7 |
| abstract_inverted_index.with | 78, 130 |
| abstract_inverted_index.Then, | 67 |
| abstract_inverted_index.Using | 81, 120 |
| abstract_inverted_index.among | 65 |
| abstract_inverted_index.begin | 47 |
| abstract_inverted_index.early | 166 |
| abstract_inverted_index.plot, | 96 |
| abstract_inverted_index.score | 162 |
| abstract_inverted_index.short | 108 |
| abstract_inverted_index.space | 104 |
| abstract_inverted_index.stock | 16, 54 |
| abstract_inverted_index.study | 26 |
| abstract_inverted_index.these | 115 |
| abstract_inverted_index.under | 37 |
| abstract_inverted_index.which | 11, 85 |
| abstract_inverted_index.years | 150 |
| abstract_inverted_index.apart, | 110 |
| abstract_inverted_index.global | 169 |
| abstract_inverted_index.locate | 98 |
| abstract_inverted_index.market | 19 |
| abstract_inverted_index.moving | 51 |
| abstract_inverted_index.scheme | 31 |
| abstract_inverted_index.score. | 145 |
| abstract_inverted_index.signal | 167 |
| abstract_inverted_index.space, | 84, 128 |
| abstract_inverted_index.stocks | 77, 92, 100, 117, 124 |
| abstract_inverted_index.strong | 79 |
| abstract_inverted_index.because | 56, 111 |
| abstract_inverted_index.between | 114, 123 |
| abstract_inverted_index.dynamic | 71 |
| abstract_inverted_index.failure | 13 |
| abstract_inverted_index.monitor | 34 |
| abstract_inverted_index.network | 73, 95 |
| abstract_inverted_index.propose | 141 |
| abstract_inverted_index.related | 87 |
| abstract_inverted_index.returns | 55 |
| abstract_inverted_index.salient | 132 |
| abstract_inverted_index.stocks. | 66 |
| abstract_inverted_index.strong. | 119 |
| abstract_inverted_index.Bayesian | 29 |
| abstract_inverted_index.decision | 30 |
| abstract_inverted_index.distance | 109 |
| abstract_inverted_index.markets, | 2 |
| abstract_inverted_index.position | 90 |
| abstract_inverted_index.proposed | 159 |
| abstract_inverted_index.proposes | 27 |
| abstract_inverted_index.sequence | 22 |
| abstract_inverted_index.systemic | 3, 35, 143, 160 |
| abstract_inverted_index.together | 129 |
| abstract_inverted_index.triggers | 20 |
| abstract_inverted_index.capturing | 49 |
| abstract_inverted_index.construct | 69 |
| abstract_inverted_index.distances | 122 |
| abstract_inverted_index.failures. | 24 |
| abstract_inverted_index.financial | 1, 43, 72, 83, 103, 127, 137, 170 |
| abstract_inverted_index.represent | 59 |
| abstract_inverted_index.strengths | 61 |
| abstract_inverted_index.demonstrate | 154 |
| abstract_inverted_index.dynamically | 33 |
| abstract_inverted_index.management, | 139 |
| abstract_inverted_index.management. | 45 |
| abstract_inverted_index.preferences | 39, 133 |
| abstract_inverted_index.correlations | 52, 58 |
| abstract_inverted_index.relationship | 113 |
| abstract_inverted_index.restrictions | 41, 135 |
| abstract_inverted_index.effectiveness | 156 |
| abstract_inverted_index.relationships | 64 |
| abstract_inverted_index.instabilities. | 171 |
| abstract_inverted_index.relationships. | 80 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5061166145 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.12854161 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |