Beamforming against main lobe interference based on radial basis function neural network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2031/1/012061
Aiming at the problem that the performance of traditional beamforming algorithm deteriorates sharply in the presence of main lobe interference, a beamforming algorithm based on radial basis function (RBF) neural network is proposed. Firstly, the minimum variance distortionless response (MVDR) is used to solve the optimal beam pattern in the presence of side lobe interference. Then, the training set of RBF neural network is constructed according to the optimal beam pattern and the direction information of main lobe interference to train the network, so that the trained RBF neural network can suppress the main lobe interference while maintaining the ability of optimal beamforming. The simulation results show that the method can overcome the limitations of traditional beamforming algorithm, suppress the main lobe interference and side lobe interference, and form the correct beam direction. At the same time, the algorithm also has good real-time performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2031/1/012061
- OA Status
- diamond
- Cited By
- 2
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3203883514
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3203883514Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2031/1/012061Digital Object Identifier
- Title
-
Beamforming against main lobe interference based on radial basis function neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Shuai Wang, Jianjun Xiang, Peng Fang, Zhijun Li, Haoyang LiList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2031/1/012061Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2031/1/012061Direct OA link when available
- Concepts
-
Beamforming, Main lobe, Side lobe, Interference (communication), Computer science, Artificial neural network, Lobe, Radial basis function, Algorithm, Artificial intelligence, Telecommunications, Channel (broadcasting), Anatomy, Antenna (radio), MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3203883514 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| ids.doi | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| ids.mag | 3203883514 |
| ids.openalex | https://openalex.org/W3203883514 |
| fwci | 0.14397953 |
| type | article |
| title | Beamforming against main lobe interference based on radial basis function neural network |
| biblio.issue | 1 |
| biblio.volume | 2031 |
| biblio.last_page | 012061 |
| biblio.first_page | 012061 |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T10931 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Direction-of-Arrival Estimation Techniques |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C54197355 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8755049109458923 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5782992 |
| concepts[0].display_name | Beamforming |
| concepts[1].id | https://openalex.org/C166923610 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8744683861732483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6673925 |
| concepts[1].display_name | Main lobe |
| concepts[2].id | https://openalex.org/C181856588 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7641048431396484 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2040092 |
| concepts[2].display_name | Side lobe |
| concepts[3].id | https://openalex.org/C32022120 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6679426431655884 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[3].display_name | Interference (communication) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6137493848800659 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6051609516143799 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C2777876421 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5000300407409668 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1637174 |
| concepts[6].display_name | Lobe |
| concepts[7].id | https://openalex.org/C98856871 |
| concepts[7].level | 3 |
| concepts[7].score | 0.46400442719459534 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1588488 |
| concepts[7].display_name | Radial basis function |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.430726021528244 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.27070045471191406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22185474634170532 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C127162648 |
| concepts[11].level | 2 |
| concepts[11].score | 0.13376113772392273 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[11].display_name | Channel (broadcasting) |
| concepts[12].id | https://openalex.org/C105702510 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[12].display_name | Anatomy |
| concepts[13].id | https://openalex.org/C21822782 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131214 |
| concepts[13].display_name | Antenna (radio) |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/beamforming |
| keywords[0].score | 0.8755049109458923 |
| keywords[0].display_name | Beamforming |
| keywords[1].id | https://openalex.org/keywords/main-lobe |
| keywords[1].score | 0.8744683861732483 |
| keywords[1].display_name | Main lobe |
| keywords[2].id | https://openalex.org/keywords/side-lobe |
| keywords[2].score | 0.7641048431396484 |
| keywords[2].display_name | Side lobe |
| keywords[3].id | https://openalex.org/keywords/interference |
| keywords[3].score | 0.6679426431655884 |
| keywords[3].display_name | Interference (communication) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6137493848800659 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.6051609516143799 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/lobe |
| keywords[6].score | 0.5000300407409668 |
| keywords[6].display_name | Lobe |
| keywords[7].id | https://openalex.org/keywords/radial-basis-function |
| keywords[7].score | 0.46400442719459534 |
| keywords[7].display_name | Radial basis function |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.430726021528244 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.27070045471191406 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.22185474634170532 |
| keywords[10].display_name | Telecommunications |
| keywords[11].id | https://openalex.org/keywords/channel |
| keywords[11].score | 0.13376113772392273 |
| keywords[11].display_name | Channel (broadcasting) |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2031/1/012061 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100328312 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7897-2024 |
| authorships[0].author.display_name | Shuai Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210104252 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210104252 |
| authorships[0].institutions[0].ror | https://ror.org/00seraz22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210104252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Air Force Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuai Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[1].author.id | https://openalex.org/A5009023582 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6862-2696 |
| authorships[1].author.display_name | Jianjun Xiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210104252 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210104252 |
| authorships[1].institutions[0].ror | https://ror.org/00seraz22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210104252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Air Force Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianjun Xiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[2].author.id | https://openalex.org/A5100601527 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9070-9069 |
| authorships[2].author.display_name | Peng Fang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210104252 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210104252 |
| authorships[2].institutions[0].ror | https://ror.org/00seraz22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210104252 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Air Force Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fang Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[3].author.id | https://openalex.org/A5100450024 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3909-488X |
| authorships[3].author.display_name | Zhijun Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210104252 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210104252 |
| authorships[3].institutions[0].ror | https://ror.org/00seraz22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210104252 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Air Force Engineering University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhijun Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[4].author.id | https://openalex.org/A5100369545 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3544-5563 |
| authorships[4].author.display_name | Haoyang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210104252 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210104252 |
| authorships[4].institutions[0].ror | https://ror.org/00seraz22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210104252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Air Force Engineering University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Haoyang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Aeronautical Engineering, Air Force Engineering University, Xi’an, Shanxi, 710038, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Beamforming against main lobe interference based on radial basis function neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W2170642318, https://openalex.org/W3178126778, https://openalex.org/W2179708541, https://openalex.org/W2061216600, https://openalex.org/W2582252725, https://openalex.org/W2995363960, https://openalex.org/W4308654611, https://openalex.org/W2368881587, https://openalex.org/W3003713121, https://openalex.org/W2535162136 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2031/1/012061 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| primary_location.id | doi:10.1088/1742-6596/2031/1/012061 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2031/1/012061 |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3186409190, https://openalex.org/W3163873486, https://openalex.org/W3132018284, https://openalex.org/W3088127694, https://openalex.org/W3088370998, https://openalex.org/W3036771670, https://openalex.org/W2802225635 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 21 |
| abstract_inverted_index.At | 134 |
| abstract_inverted_index.at | 2 |
| abstract_inverted_index.in | 14, 49 |
| abstract_inverted_index.is | 32, 41, 64 |
| abstract_inverted_index.of | 8, 17, 52, 60, 76, 101, 115 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.so | 84 |
| abstract_inverted_index.to | 43, 67, 80 |
| abstract_inverted_index.RBF | 61, 88 |
| abstract_inverted_index.The | 104 |
| abstract_inverted_index.and | 72, 124, 128 |
| abstract_inverted_index.can | 91, 111 |
| abstract_inverted_index.has | 141 |
| abstract_inverted_index.set | 59 |
| abstract_inverted_index.the | 3, 6, 15, 35, 45, 50, 57, 68, 73, 82, 86, 93, 99, 109, 113, 120, 130, 135, 138 |
| abstract_inverted_index.also | 140 |
| abstract_inverted_index.beam | 47, 70, 132 |
| abstract_inverted_index.form | 129 |
| abstract_inverted_index.good | 142 |
| abstract_inverted_index.lobe | 19, 54, 78, 95, 122, 126 |
| abstract_inverted_index.main | 18, 77, 94, 121 |
| abstract_inverted_index.same | 136 |
| abstract_inverted_index.show | 107 |
| abstract_inverted_index.side | 53, 125 |
| abstract_inverted_index.that | 5, 85, 108 |
| abstract_inverted_index.used | 42 |
| abstract_inverted_index.(RBF) | 29 |
| abstract_inverted_index.Then, | 56 |
| abstract_inverted_index.based | 24 |
| abstract_inverted_index.basis | 27 |
| abstract_inverted_index.solve | 44 |
| abstract_inverted_index.time, | 137 |
| abstract_inverted_index.train | 81 |
| abstract_inverted_index.while | 97 |
| abstract_inverted_index.(MVDR) | 40 |
| abstract_inverted_index.Aiming | 1 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.neural | 30, 62, 89 |
| abstract_inverted_index.radial | 26 |
| abstract_inverted_index.ability | 100 |
| abstract_inverted_index.correct | 131 |
| abstract_inverted_index.minimum | 36 |
| abstract_inverted_index.network | 31, 63, 90 |
| abstract_inverted_index.optimal | 46, 69, 102 |
| abstract_inverted_index.pattern | 48, 71 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.sharply | 13 |
| abstract_inverted_index.trained | 87 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Firstly, | 34 |
| abstract_inverted_index.function | 28 |
| abstract_inverted_index.network, | 83 |
| abstract_inverted_index.overcome | 112 |
| abstract_inverted_index.presence | 16, 51 |
| abstract_inverted_index.response | 39 |
| abstract_inverted_index.suppress | 92, 119 |
| abstract_inverted_index.training | 58 |
| abstract_inverted_index.variance | 37 |
| abstract_inverted_index.according | 66 |
| abstract_inverted_index.algorithm | 11, 23, 139 |
| abstract_inverted_index.direction | 74 |
| abstract_inverted_index.proposed. | 33 |
| abstract_inverted_index.real-time | 143 |
| abstract_inverted_index.algorithm, | 118 |
| abstract_inverted_index.direction. | 133 |
| abstract_inverted_index.simulation | 105 |
| abstract_inverted_index.beamforming | 10, 22, 117 |
| abstract_inverted_index.constructed | 65 |
| abstract_inverted_index.information | 75 |
| abstract_inverted_index.limitations | 114 |
| abstract_inverted_index.maintaining | 98 |
| abstract_inverted_index.performance | 7 |
| abstract_inverted_index.traditional | 9, 116 |
| abstract_inverted_index.beamforming. | 103 |
| abstract_inverted_index.deteriorates | 12 |
| abstract_inverted_index.interference | 79, 96, 123 |
| abstract_inverted_index.performance. | 144 |
| abstract_inverted_index.interference, | 20, 127 |
| abstract_inverted_index.interference. | 55 |
| abstract_inverted_index.distortionless | 38 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.46647902 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |