Bearing Fault Diagnosis via FMD with Parameters Optimized by an Improved Crested Porcupine Optimizer Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25237339
Feature Mode Decomposition (FMD) can effectively extract bearing fault features even in the case of strong interference noise by means of adaptive finite impulse response filter banks along with correlated kurtosis. Nevertheless, the filter length L and the number of decomposition modes K need to be predefined carefully in a manual way. Otherwise, mismatched parameters could lead to redundant components or even missed detection of fault information. To mitigate the reliance on manual parameter setting, recent studies have introduced optimization algorithms such as the Whale Optimization Algorithm and the Crested Porcupine Optimizer to find the optimal parameters for FMD. However, such methods usually suffer from the dilemma of easily premature convergence in global search and long-time consumption in local fine adjustment, rendering them with difficulty in meeting the requirements of real-time and accurate diagnosis. Therefore, this paper proposes an improved Crested Porcupine Optimizer (ICPO), which can dynamically balance global and local exploitation. Furthermore, a bearing fault diagnosis method named ICPO-FMD is constructed, wherein the optimal parameter combination of K and L obtained using ICPO is provided to FMD in order to decompose bearing signals into a family of intrinsic mode functions (IMFs), and then fault sensitive components are extracted according to the proposed IMF screening principle. Finally, a reconstructed signal is obtained, followed by an envelope demodulation analysis. Experiments on simulation, laboratory and engineering signals demonstrate that the proposed method can accurately extract the fault characteristic frequency and its harmonics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25237339
- https://www.mdpi.com/1424-8220/25/23/7339/pdf
- OA Status
- gold
- References
- 24
- OpenAlex ID
- https://openalex.org/W4417055016
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417055016Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25237339Digital Object Identifier
- Title
-
Bearing Fault Diagnosis via FMD with Parameters Optimized by an Improved Crested Porcupine OptimizerWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Ping Pan, Haibo Liu, Bing LeiList of authors in order
- Landing page
-
https://doi.org/10.3390/s25237339Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/23/7339/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/23/7339/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417055016 |
|---|---|
| doi | https://doi.org/10.3390/s25237339 |
| ids.doi | https://doi.org/10.3390/s25237339 |
| ids.openalex | https://openalex.org/W4417055016 |
| fwci | |
| type | article |
| title | Bearing Fault Diagnosis via FMD with Parameters Optimized by an Improved Crested Porcupine Optimizer |
| biblio.issue | 23 |
| biblio.volume | 25 |
| biblio.last_page | 7339 |
| biblio.first_page | 7339 |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25237339 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/23/7339/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25237339 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042514016 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3333-5539 |
| authorships[0].author.display_name | Ping Pan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13985625 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
| authorships[0].institutions[0].id | https://openalex.org/I13985625 |
| authorships[0].institutions[0].ror | https://ror.org/05x2f1m38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13985625 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | East China Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ping Pan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
| authorships[1].author.id | https://openalex.org/A5115602439 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4213-2883 |
| authorships[1].author.display_name | Haibo Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I13985625 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
| authorships[1].institutions[0].id | https://openalex.org/I13985625 |
| authorships[1].institutions[0].ror | https://ror.org/05x2f1m38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I13985625 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | East China Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
| authorships[2].author.id | https://openalex.org/A5103083902 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9297-1415 |
| authorships[2].author.display_name | Bing Lei |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3131412887 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Intelligent Technology, Jiangxi Open University, Nanchang 330046, China |
| authorships[2].institutions[0].id | https://openalex.org/I3131412887 |
| authorships[2].institutions[0].ror | https://ror.org/05k2j8e48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3131412887 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiangxi University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bing Lei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Intelligent Technology, Jiangxi Open University, Nanchang 330046, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/23/7339/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Bearing Fault Diagnosis via FMD with Parameters Optimized by an Improved Crested Porcupine Optimizer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:10:59.065948 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/s25237339 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/23/7339/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25237339 |
| primary_location.id | doi:10.3390/s25237339 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/23/7339/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25237339 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4308889875, https://openalex.org/W2070310969, https://openalex.org/W2029956212, https://openalex.org/W2321536237, https://openalex.org/W4412454390, https://openalex.org/W4411937767, https://openalex.org/W4403707564, https://openalex.org/W4399565405, https://openalex.org/W2000982976, https://openalex.org/W4401246678, https://openalex.org/W4393142257, https://openalex.org/W4225919356, https://openalex.org/W4412094251, https://openalex.org/W4302024885, https://openalex.org/W4390128809, https://openalex.org/W4406929035, https://openalex.org/W4318219810, https://openalex.org/W4408527840, https://openalex.org/W4410383376, https://openalex.org/W2912189291, https://openalex.org/W4397030481, https://openalex.org/W4390843807, https://openalex.org/W2955365433, https://openalex.org/W4281258161 |
| referenced_works_count | 24 |
| abstract_inverted_index.K | 42, 168 |
| abstract_inverted_index.L | 35, 170 |
| abstract_inverted_index.a | 49, 153, 185, 207 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.an | 138, 214 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.be | 45 |
| abstract_inverted_index.by | 18, 213 |
| abstract_inverted_index.in | 11, 48, 111, 117, 125, 178 |
| abstract_inverted_index.is | 160, 174, 210 |
| abstract_inverted_index.of | 14, 20, 39, 64, 107, 129, 167, 187 |
| abstract_inverted_index.on | 71, 219 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 44, 57, 92, 176, 180, 200 |
| abstract_inverted_index.FMD | 177 |
| abstract_inverted_index.IMF | 203 |
| abstract_inverted_index.and | 36, 87, 114, 131, 149, 169, 192, 222, 237 |
| abstract_inverted_index.are | 197 |
| abstract_inverted_index.can | 4, 145, 230 |
| abstract_inverted_index.for | 97 |
| abstract_inverted_index.its | 238 |
| abstract_inverted_index.the | 12, 32, 37, 69, 83, 88, 94, 105, 127, 163, 201, 227, 233 |
| abstract_inverted_index.FMD. | 98 |
| abstract_inverted_index.ICPO | 173 |
| abstract_inverted_index.Mode | 1 |
| abstract_inverted_index.case | 13 |
| abstract_inverted_index.even | 10, 61 |
| abstract_inverted_index.find | 93 |
| abstract_inverted_index.fine | 119 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.have | 77 |
| abstract_inverted_index.into | 184 |
| abstract_inverted_index.lead | 56 |
| abstract_inverted_index.mode | 189 |
| abstract_inverted_index.need | 43 |
| abstract_inverted_index.such | 81, 100 |
| abstract_inverted_index.that | 226 |
| abstract_inverted_index.them | 122 |
| abstract_inverted_index.then | 193 |
| abstract_inverted_index.this | 135 |
| abstract_inverted_index.way. | 51 |
| abstract_inverted_index.with | 28, 123 |
| abstract_inverted_index.(FMD) | 3 |
| abstract_inverted_index.Whale | 84 |
| abstract_inverted_index.along | 27 |
| abstract_inverted_index.banks | 26 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.fault | 8, 65, 155, 194, 234 |
| abstract_inverted_index.local | 118, 150 |
| abstract_inverted_index.means | 19 |
| abstract_inverted_index.modes | 41 |
| abstract_inverted_index.named | 158 |
| abstract_inverted_index.noise | 17 |
| abstract_inverted_index.order | 179 |
| abstract_inverted_index.paper | 136 |
| abstract_inverted_index.using | 172 |
| abstract_inverted_index.which | 144 |
| abstract_inverted_index.easily | 108 |
| abstract_inverted_index.family | 186 |
| abstract_inverted_index.filter | 25, 33 |
| abstract_inverted_index.finite | 22 |
| abstract_inverted_index.global | 112, 148 |
| abstract_inverted_index.length | 34 |
| abstract_inverted_index.manual | 50, 72 |
| abstract_inverted_index.method | 157, 229 |
| abstract_inverted_index.missed | 62 |
| abstract_inverted_index.number | 38 |
| abstract_inverted_index.recent | 75 |
| abstract_inverted_index.search | 113 |
| abstract_inverted_index.signal | 209 |
| abstract_inverted_index.strong | 15 |
| abstract_inverted_index.suffer | 103 |
| abstract_inverted_index.(ICPO), | 143 |
| abstract_inverted_index.(IMFs), | 191 |
| abstract_inverted_index.Crested | 89, 140 |
| abstract_inverted_index.Feature | 0 |
| abstract_inverted_index.balance | 147 |
| abstract_inverted_index.bearing | 7, 154, 182 |
| abstract_inverted_index.dilemma | 106 |
| abstract_inverted_index.extract | 6, 232 |
| abstract_inverted_index.impulse | 23 |
| abstract_inverted_index.meeting | 126 |
| abstract_inverted_index.methods | 101 |
| abstract_inverted_index.optimal | 95, 164 |
| abstract_inverted_index.signals | 183, 224 |
| abstract_inverted_index.studies | 76 |
| abstract_inverted_index.usually | 102 |
| abstract_inverted_index.wherein | 162 |
| abstract_inverted_index.Finally, | 206 |
| abstract_inverted_index.However, | 99 |
| abstract_inverted_index.ICPO-FMD | 159 |
| abstract_inverted_index.accurate | 132 |
| abstract_inverted_index.adaptive | 21 |
| abstract_inverted_index.envelope | 215 |
| abstract_inverted_index.features | 9 |
| abstract_inverted_index.followed | 212 |
| abstract_inverted_index.improved | 139 |
| abstract_inverted_index.mitigate | 68 |
| abstract_inverted_index.obtained | 171 |
| abstract_inverted_index.proposed | 202, 228 |
| abstract_inverted_index.proposes | 137 |
| abstract_inverted_index.provided | 175 |
| abstract_inverted_index.reliance | 70 |
| abstract_inverted_index.response | 24 |
| abstract_inverted_index.setting, | 74 |
| abstract_inverted_index.Algorithm | 86 |
| abstract_inverted_index.Optimizer | 91, 142 |
| abstract_inverted_index.Porcupine | 90, 141 |
| abstract_inverted_index.according | 199 |
| abstract_inverted_index.analysis. | 217 |
| abstract_inverted_index.carefully | 47 |
| abstract_inverted_index.decompose | 181 |
| abstract_inverted_index.detection | 63 |
| abstract_inverted_index.diagnosis | 156 |
| abstract_inverted_index.extracted | 198 |
| abstract_inverted_index.frequency | 236 |
| abstract_inverted_index.functions | 190 |
| abstract_inverted_index.intrinsic | 188 |
| abstract_inverted_index.kurtosis. | 30 |
| abstract_inverted_index.long-time | 115 |
| abstract_inverted_index.obtained, | 211 |
| abstract_inverted_index.parameter | 73, 165 |
| abstract_inverted_index.premature | 109 |
| abstract_inverted_index.real-time | 130 |
| abstract_inverted_index.redundant | 58 |
| abstract_inverted_index.rendering | 121 |
| abstract_inverted_index.screening | 204 |
| abstract_inverted_index.sensitive | 195 |
| abstract_inverted_index.Otherwise, | 52 |
| abstract_inverted_index.Therefore, | 134 |
| abstract_inverted_index.accurately | 231 |
| abstract_inverted_index.algorithms | 80 |
| abstract_inverted_index.components | 59, 196 |
| abstract_inverted_index.correlated | 29 |
| abstract_inverted_index.diagnosis. | 133 |
| abstract_inverted_index.difficulty | 124 |
| abstract_inverted_index.harmonics. | 239 |
| abstract_inverted_index.introduced | 78 |
| abstract_inverted_index.laboratory | 221 |
| abstract_inverted_index.mismatched | 53 |
| abstract_inverted_index.parameters | 54, 96 |
| abstract_inverted_index.predefined | 46 |
| abstract_inverted_index.principle. | 205 |
| abstract_inverted_index.Experiments | 218 |
| abstract_inverted_index.adjustment, | 120 |
| abstract_inverted_index.combination | 166 |
| abstract_inverted_index.consumption | 116 |
| abstract_inverted_index.convergence | 110 |
| abstract_inverted_index.demonstrate | 225 |
| abstract_inverted_index.dynamically | 146 |
| abstract_inverted_index.effectively | 5 |
| abstract_inverted_index.engineering | 223 |
| abstract_inverted_index.simulation, | 220 |
| abstract_inverted_index.Furthermore, | 152 |
| abstract_inverted_index.Optimization | 85 |
| abstract_inverted_index.constructed, | 161 |
| abstract_inverted_index.demodulation | 216 |
| abstract_inverted_index.information. | 66 |
| abstract_inverted_index.interference | 16 |
| abstract_inverted_index.optimization | 79 |
| abstract_inverted_index.requirements | 128 |
| abstract_inverted_index.Decomposition | 2 |
| abstract_inverted_index.Nevertheless, | 31 |
| abstract_inverted_index.decomposition | 40 |
| abstract_inverted_index.exploitation. | 151 |
| abstract_inverted_index.reconstructed | 208 |
| abstract_inverted_index.characteristic | 235 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |