Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text Mining Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14173513
Data-driven forecasting is becoming increasingly central to modern energy management, yet nonspecialists without a background in artificial intelligence (AI) face significant barriers to entry. While Python is the dominant machine learning language, R remains a practical and accessible tool for users with expertise in statistics, engineering, or domain-specific analysis. To inform tool selection, we first provide an evidence-based comparison of R with major alternatives before reviewing 49 peer-reviewed articles published between 2020 and 2025 in Science Citation Index Expanded (SCIE)-level journals that utilized R for energy forecasting tasks, including electricity (regional and site-level), solar, wind, thermal energy, and natural gas. Despite such growth, the field still lacks a systematic, cross-domain synthesis that clarifies which R-based methods prevail, how accessible workflows are implemented, and where methodological gaps remain; this motivated our use of text mining. Text mining techniques were employed to categorize the literature according to forecasting objectives, modeling methods, application domains, and tool usage patterns. The results indicate that tree-based ensemble learning models—e.g., random forests, gradient boosting, and hybrid variants—are employed most frequently, particularly for solar and short-term load forecasting. Notably, few studies incorporated automated model selection or explainable AI; however, there is a growing shift toward interpretable and beginner-friendly workflows. This review offers a practical reference for nonexperts seeking to apply R in energy forecasting contexts, emphasizing accessible modeling strategies and reproducible practices. We also curate example R scripts, workflow templates, and a study-level link catalog to support replication. The findings of this review support the broader democratization of energy analytics by identifying trends and methodologies suitable for users without advanced AI training. Finally, we synthesize domain-specific evidence and outline the text-mining pipeline, present visual keyword profiles and comparative performance tables that surface prevailing strategies and unmet needs, and conclude with practical guidance and targeted directions for future research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14173513
- OA Status
- gold
- References
- 117
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413945717
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413945717Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14173513Digital Object Identifier
- Title
-
Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text MiningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-02Full publication date if available
- Authors
-
MinJoong Kim, Hyeon Woo Kim, Jihoon MoonList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14173513Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics14173513Direct OA link when available
- Concepts
-
Data science, Computer science, Energy (signal processing), Data mining, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
117Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413945717 |
|---|---|
| doi | https://doi.org/10.3390/electronics14173513 |
| ids.doi | https://doi.org/10.3390/electronics14173513 |
| ids.openalex | https://openalex.org/W4413945717 |
| fwci | 0.0 |
| type | article |
| title | Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text Mining |
| awards[0].id | https://openalex.org/G3746769787 |
| awards[0].funder_id | https://openalex.org/F4320321301 |
| awards[0].display_name | |
| awards[0].funder_award_id | not applicable. |
| awards[0].funder_display_name | Soonchunhyang University |
| biblio.issue | 17 |
| biblio.volume | 14 |
| biblio.last_page | 3513 |
| biblio.first_page | 3513 |
| topics[0].id | https://openalex.org/T13910 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3300 |
| topics[0].subfield.display_name | General Social Sciences |
| topics[0].display_name | Computational and Text Analysis Methods |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T13398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Analysis with R |
| funders[0].id | https://openalex.org/F4320321301 |
| funders[0].ror | https://ror.org/03qjsrb10 |
| funders[0].display_name | Soonchunhyang University |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2522767166 |
| concepts[0].level | 1 |
| concepts[0].score | 0.48654118180274963 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[0].display_name | Data science |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4649347960948944 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C186370098 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44694775342941284 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[2].display_name | Energy (signal processing) |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33918309211730957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.10443785786628723 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.09411182999610901 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/data-science |
| keywords[0].score | 0.48654118180274963 |
| keywords[0].display_name | Data science |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4649347960948944 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/energy |
| keywords[2].score | 0.44694775342941284 |
| keywords[2].display_name | Energy (signal processing) |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.33918309211730957 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.10443785786628723 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.09411182999610901 |
| keywords[5].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/electronics14173513 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14173513 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5031401877 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2330-546X |
| authorships[0].author.display_name | MinJoong Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24541011 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I24541011 |
| authorships[0].institutions[0].ror | https://ror.org/03qjsrb10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24541011 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Soonchunhyang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minjoong Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5049014917 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7482-2213 |
| authorships[1].author.display_name | Hyeon Woo Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24541011 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I24541011 |
| authorships[1].institutions[0].ror | https://ror.org/03qjsrb10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24541011 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Soonchunhyang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hyeonwoo Kim |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5082236718 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9524-5729 |
| authorships[2].author.display_name | Jihoon Moon |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65832422 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Data Science, Duksung Women's University, Seoul 01369, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I65832422 |
| authorships[2].institutions[0].ror | https://ror.org/01h6frr69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65832422 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Duksung Women's University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jihoon Moon |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Data Science, Duksung Women's University, Seoul 01369, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics14173513 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text Mining |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13910 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3300 |
| primary_topic.subfield.display_name | General Social Sciences |
| primary_topic.display_name | Computational and Text Analysis Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14173513 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14173513 |
| primary_location.id | doi:10.3390/electronics14173513 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14173513 |
| publication_date | 2025-09-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W614932425, https://openalex.org/W4402459871, https://openalex.org/W4390399130, https://openalex.org/W2786918196, https://openalex.org/W4389489802, https://openalex.org/W4378072183, https://openalex.org/W2327401273, https://openalex.org/W4247574165, https://openalex.org/W4401285577, https://openalex.org/W3024158773, https://openalex.org/W4286958726, https://openalex.org/W4399163822, https://openalex.org/W2915081556, https://openalex.org/W4409385053, https://openalex.org/W4400037166, https://openalex.org/W4399627866, https://openalex.org/W2895553377, https://openalex.org/W2465750682, https://openalex.org/W2223092947, https://openalex.org/W2989758827, https://openalex.org/W2116512828, https://openalex.org/W2073210389, https://openalex.org/W2790781641, https://openalex.org/W4242053123, https://openalex.org/W2979826702, https://openalex.org/W2181523240, https://openalex.org/W2747599906, https://openalex.org/W71547456, https://openalex.org/W3118620764, https://openalex.org/W3043608949, https://openalex.org/W3047875748, https://openalex.org/W3144331042, https://openalex.org/W4206025198, https://openalex.org/W4302292898, https://openalex.org/W4390144106, https://openalex.org/W4399771749, https://openalex.org/W4391808244, https://openalex.org/W4402613661, https://openalex.org/W4407189756, https://openalex.org/W4408817105, https://openalex.org/W4382315186, https://openalex.org/W4401076731, https://openalex.org/W4405363904, https://openalex.org/W4399168285, https://openalex.org/W3015329712, https://openalex.org/W3087514398, https://openalex.org/W3009465059, https://openalex.org/W3006510956, https://openalex.org/W2999491213, https://openalex.org/W3135787248, https://openalex.org/W3182685990, https://openalex.org/W3213430920, https://openalex.org/W4224293806, https://openalex.org/W4200546230, https://openalex.org/W4366496524, https://openalex.org/W4391313099, https://openalex.org/W4408200491, https://openalex.org/W4406859393, https://openalex.org/W3033993664, https://openalex.org/W4408362339, https://openalex.org/W4226076258, https://openalex.org/W4309306772, https://openalex.org/W2990865816, https://openalex.org/W3055183854, https://openalex.org/W3022970796, https://openalex.org/W3197068484, https://openalex.org/W4281478819, https://openalex.org/W4405250860, https://openalex.org/W4400080269, https://openalex.org/W4401809534, https://openalex.org/W2793981022, https://openalex.org/W4403826772, https://openalex.org/W3001739778, https://openalex.org/W3045333620, https://openalex.org/W3166926759, https://openalex.org/W4393327667, https://openalex.org/W4402035893, https://openalex.org/W4386222374, https://openalex.org/W3066024730, https://openalex.org/W4401446869, https://openalex.org/W3104104310, https://openalex.org/W3043612171, https://openalex.org/W3155843080, https://openalex.org/W3118396091, https://openalex.org/W3131639726, https://openalex.org/W3126181623, https://openalex.org/W4205785849, https://openalex.org/W4308035849, https://openalex.org/W4308451985, https://openalex.org/W4407193736, https://openalex.org/W3173113165, https://openalex.org/W3013549289, https://openalex.org/W3007665943, https://openalex.org/W4324029828, https://openalex.org/W3046474000, https://openalex.org/W3003309471, https://openalex.org/W3049309800, https://openalex.org/W3039789219, https://openalex.org/W3100982980, https://openalex.org/W4412612344, https://openalex.org/W4410253025, https://openalex.org/W4405782170, https://openalex.org/W4386320423, https://openalex.org/W4399548750, https://openalex.org/W2038043464, https://openalex.org/W2090491854, https://openalex.org/W2160170318, https://openalex.org/W1831050183, https://openalex.org/W2611772571, https://openalex.org/W4401889334, https://openalex.org/W2990427812, https://openalex.org/W4302990361, https://openalex.org/W3102477513, https://openalex.org/W4389921322, https://openalex.org/W273955616, https://openalex.org/W2997591727, https://openalex.org/W410850256 |
| referenced_works_count | 117 |
| abstract_inverted_index.R | 32, 60, 83, 212, 228 |
| abstract_inverted_index.a | 13, 34, 107, 193, 204, 233 |
| abstract_inverted_index.49 | 66 |
| abstract_inverted_index.AI | 262 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.We | 224 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.by | 252 |
| abstract_inverted_index.in | 15, 43, 74, 213 |
| abstract_inverted_index.is | 2, 26, 192 |
| abstract_inverted_index.of | 59, 131, 242, 249 |
| abstract_inverted_index.or | 46, 187 |
| abstract_inverted_index.to | 6, 22, 139, 144, 210, 237 |
| abstract_inverted_index.we | 53, 265 |
| abstract_inverted_index.AI; | 189 |
| abstract_inverted_index.The | 155, 240 |
| abstract_inverted_index.and | 36, 72, 91, 97, 122, 151, 167, 176, 198, 221, 232, 255, 269, 278, 286, 289, 294 |
| abstract_inverted_index.are | 120 |
| abstract_inverted_index.few | 181 |
| abstract_inverted_index.for | 39, 84, 174, 207, 258, 297 |
| abstract_inverted_index.how | 117 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 27, 103, 141, 246, 271 |
| abstract_inverted_index.use | 130 |
| abstract_inverted_index.yet | 10 |
| abstract_inverted_index.(AI) | 18 |
| abstract_inverted_index.2020 | 71 |
| abstract_inverted_index.2025 | 73 |
| abstract_inverted_index.Text | 134 |
| abstract_inverted_index.This | 201 |
| abstract_inverted_index.also | 225 |
| abstract_inverted_index.face | 19 |
| abstract_inverted_index.gaps | 125 |
| abstract_inverted_index.gas. | 99 |
| abstract_inverted_index.link | 235 |
| abstract_inverted_index.load | 178 |
| abstract_inverted_index.most | 171 |
| abstract_inverted_index.such | 101 |
| abstract_inverted_index.text | 132 |
| abstract_inverted_index.that | 81, 111, 158, 282 |
| abstract_inverted_index.this | 127, 243 |
| abstract_inverted_index.tool | 38, 51, 152 |
| abstract_inverted_index.were | 137 |
| abstract_inverted_index.with | 41, 61, 291 |
| abstract_inverted_index.Index | 77 |
| abstract_inverted_index.While | 24 |
| abstract_inverted_index.apply | 211 |
| abstract_inverted_index.field | 104 |
| abstract_inverted_index.first | 54 |
| abstract_inverted_index.lacks | 106 |
| abstract_inverted_index.major | 62 |
| abstract_inverted_index.model | 185 |
| abstract_inverted_index.shift | 195 |
| abstract_inverted_index.solar | 175 |
| abstract_inverted_index.still | 105 |
| abstract_inverted_index.there | 191 |
| abstract_inverted_index.unmet | 287 |
| abstract_inverted_index.usage | 153 |
| abstract_inverted_index.users | 40, 259 |
| abstract_inverted_index.where | 123 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.wind, | 94 |
| abstract_inverted_index.Python | 25 |
| abstract_inverted_index.before | 64 |
| abstract_inverted_index.curate | 226 |
| abstract_inverted_index.energy | 8, 85, 214, 250 |
| abstract_inverted_index.entry. | 23 |
| abstract_inverted_index.future | 298 |
| abstract_inverted_index.hybrid | 168 |
| abstract_inverted_index.inform | 50 |
| abstract_inverted_index.mining | 135 |
| abstract_inverted_index.modern | 7 |
| abstract_inverted_index.needs, | 288 |
| abstract_inverted_index.offers | 203 |
| abstract_inverted_index.random | 163 |
| abstract_inverted_index.review | 202, 244 |
| abstract_inverted_index.solar, | 93 |
| abstract_inverted_index.tables | 281 |
| abstract_inverted_index.tasks, | 87 |
| abstract_inverted_index.toward | 196 |
| abstract_inverted_index.trends | 254 |
| abstract_inverted_index.visual | 275 |
| abstract_inverted_index.Despite | 100 |
| abstract_inverted_index.R-based | 114 |
| abstract_inverted_index.Science | 75 |
| abstract_inverted_index.between | 70 |
| abstract_inverted_index.broader | 247 |
| abstract_inverted_index.catalog | 236 |
| abstract_inverted_index.central | 5 |
| abstract_inverted_index.energy, | 96 |
| abstract_inverted_index.example | 227 |
| abstract_inverted_index.growing | 194 |
| abstract_inverted_index.growth, | 102 |
| abstract_inverted_index.keyword | 276 |
| abstract_inverted_index.machine | 29 |
| abstract_inverted_index.methods | 115 |
| abstract_inverted_index.mining. | 133 |
| abstract_inverted_index.natural | 98 |
| abstract_inverted_index.outline | 270 |
| abstract_inverted_index.present | 274 |
| abstract_inverted_index.provide | 55 |
| abstract_inverted_index.remain; | 126 |
| abstract_inverted_index.remains | 33 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.seeking | 209 |
| abstract_inverted_index.studies | 182 |
| abstract_inverted_index.support | 238, 245 |
| abstract_inverted_index.surface | 283 |
| abstract_inverted_index.thermal | 95 |
| abstract_inverted_index.without | 12, 260 |
| abstract_inverted_index.Citation | 76 |
| abstract_inverted_index.Expanded | 78 |
| abstract_inverted_index.Finally, | 264 |
| abstract_inverted_index.Notably, | 180 |
| abstract_inverted_index.advanced | 261 |
| abstract_inverted_index.articles | 68 |
| abstract_inverted_index.barriers | 21 |
| abstract_inverted_index.becoming | 3 |
| abstract_inverted_index.conclude | 290 |
| abstract_inverted_index.domains, | 150 |
| abstract_inverted_index.dominant | 28 |
| abstract_inverted_index.employed | 138, 170 |
| abstract_inverted_index.ensemble | 160 |
| abstract_inverted_index.evidence | 268 |
| abstract_inverted_index.findings | 241 |
| abstract_inverted_index.forests, | 164 |
| abstract_inverted_index.gradient | 165 |
| abstract_inverted_index.guidance | 293 |
| abstract_inverted_index.however, | 190 |
| abstract_inverted_index.indicate | 157 |
| abstract_inverted_index.journals | 80 |
| abstract_inverted_index.learning | 30, 161 |
| abstract_inverted_index.methods, | 148 |
| abstract_inverted_index.modeling | 147, 219 |
| abstract_inverted_index.prevail, | 116 |
| abstract_inverted_index.profiles | 277 |
| abstract_inverted_index.scripts, | 229 |
| abstract_inverted_index.suitable | 257 |
| abstract_inverted_index.targeted | 295 |
| abstract_inverted_index.utilized | 82 |
| abstract_inverted_index.workflow | 230 |
| abstract_inverted_index.(regional | 90 |
| abstract_inverted_index.according | 143 |
| abstract_inverted_index.analysis. | 48 |
| abstract_inverted_index.analytics | 251 |
| abstract_inverted_index.automated | 184 |
| abstract_inverted_index.boosting, | 166 |
| abstract_inverted_index.clarifies | 112 |
| abstract_inverted_index.contexts, | 216 |
| abstract_inverted_index.expertise | 42 |
| abstract_inverted_index.including | 88 |
| abstract_inverted_index.language, | 31 |
| abstract_inverted_index.motivated | 128 |
| abstract_inverted_index.patterns. | 154 |
| abstract_inverted_index.pipeline, | 273 |
| abstract_inverted_index.practical | 35, 205, 292 |
| abstract_inverted_index.published | 69 |
| abstract_inverted_index.reference | 206 |
| abstract_inverted_index.research. | 299 |
| abstract_inverted_index.reviewing | 65 |
| abstract_inverted_index.selection | 186 |
| abstract_inverted_index.synthesis | 110 |
| abstract_inverted_index.training. | 263 |
| abstract_inverted_index.workflows | 119 |
| abstract_inverted_index.accessible | 37, 118, 218 |
| abstract_inverted_index.artificial | 16 |
| abstract_inverted_index.background | 14 |
| abstract_inverted_index.categorize | 140 |
| abstract_inverted_index.comparison | 58 |
| abstract_inverted_index.directions | 296 |
| abstract_inverted_index.literature | 142 |
| abstract_inverted_index.nonexperts | 208 |
| abstract_inverted_index.practices. | 223 |
| abstract_inverted_index.prevailing | 284 |
| abstract_inverted_index.selection, | 52 |
| abstract_inverted_index.short-term | 177 |
| abstract_inverted_index.strategies | 220, 285 |
| abstract_inverted_index.synthesize | 266 |
| abstract_inverted_index.techniques | 136 |
| abstract_inverted_index.templates, | 231 |
| abstract_inverted_index.tree-based | 159 |
| abstract_inverted_index.workflows. | 200 |
| abstract_inverted_index.Data-driven | 0 |
| abstract_inverted_index.application | 149 |
| abstract_inverted_index.comparative | 279 |
| abstract_inverted_index.electricity | 89 |
| abstract_inverted_index.emphasizing | 217 |
| abstract_inverted_index.explainable | 188 |
| abstract_inverted_index.forecasting | 1, 86, 145, 215 |
| abstract_inverted_index.frequently, | 172 |
| abstract_inverted_index.identifying | 253 |
| abstract_inverted_index.management, | 9 |
| abstract_inverted_index.objectives, | 146 |
| abstract_inverted_index.performance | 280 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.statistics, | 44 |
| abstract_inverted_index.study-level | 234 |
| abstract_inverted_index.systematic, | 108 |
| abstract_inverted_index.text-mining | 272 |
| abstract_inverted_index.(SCIE)-level | 79 |
| abstract_inverted_index.alternatives | 63 |
| abstract_inverted_index.cross-domain | 109 |
| abstract_inverted_index.engineering, | 45 |
| abstract_inverted_index.forecasting. | 179 |
| abstract_inverted_index.implemented, | 121 |
| abstract_inverted_index.incorporated | 183 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.intelligence | 17 |
| abstract_inverted_index.particularly | 173 |
| abstract_inverted_index.replication. | 239 |
| abstract_inverted_index.reproducible | 222 |
| abstract_inverted_index.site-level), | 92 |
| abstract_inverted_index.interpretable | 197 |
| abstract_inverted_index.methodologies | 256 |
| abstract_inverted_index.peer-reviewed | 67 |
| abstract_inverted_index.evidence-based | 57 |
| abstract_inverted_index.methodological | 124 |
| abstract_inverted_index.models—e.g., | 162 |
| abstract_inverted_index.nonspecialists | 11 |
| abstract_inverted_index.variants—are | 169 |
| abstract_inverted_index.democratization | 248 |
| abstract_inverted_index.domain-specific | 47, 267 |
| abstract_inverted_index.beginner-friendly | 199 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5049014917, https://openalex.org/A5082236718 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I24541011, https://openalex.org/I65832422 |
| citation_normalized_percentile.value | 0.50535881 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |