Behavior Pattern Mining-based Multi-Behavior Recommendation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.12152
Multi-behavior recommendation systems enhance effectiveness by leveraging auxiliary behaviors (such as page views and favorites) to address the limitations of traditional models that depend solely on sparse target behaviors like purchases. Existing approaches to multi-behavior recommendations typically follow one of two strategies: some derive initial node representations from individual behavior subgraphs before integrating them for a comprehensive profile, while others interpret multi-behavior data as a heterogeneous graph, applying graph neural networks to achieve a unified node representation. However, these methods do not adequately explore the intricate patterns of behavior among users and items. To bridge this gap, we introduce a novel algorithm called Behavior Pattern mining-based Multi-behavior Recommendation (BPMR). Our method extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations. We employ a Bayesian approach to streamline the recommendation process, effectively circumventing the challenges posed by graph neural network algorithms, such as the inability to accurately capture user preferences due to over-smoothing. Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms, showing an average improvement of 268.29% in Recall@10 and 248.02% in NDCG@10 metrics. The code of our BPMR is openly accessible for use and further research at https://github.com/rookitkitlee/BPMR.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.12152
- https://arxiv.org/pdf/2408.12152
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405622285
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405622285Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.12152Digital Object Identifier
- Title
-
Behavior Pattern Mining-based Multi-Behavior RecommendationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-22Full publication date if available
- Authors
-
Haojie Li, Zhiyong Cheng, Xu Yu, Jinhuan Liu, Guanfeng Liu, Junwei DuList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.12152Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.12152Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.12152Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405622285 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.12152 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.12152 |
| ids.openalex | https://openalex.org/W4405622285 |
| fwci | |
| type | preprint |
| title | Behavior Pattern Mining-based Multi-Behavior Recommendation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13083 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.955299973487854 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4846497178077698 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.332695871591568 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.32461604475975037 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4846497178077698 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.332695871591568 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.32461604475975037 |
| keywords[2].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.12152 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.12152 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.12152 |
| locations[1].id | doi:10.48550/arxiv.2408.12152 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.12152 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103325773 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-0863-9576 |
| authorships[0].author.display_name | Haojie Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Haojie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068843001 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1109-5028 |
| authorships[1].author.display_name | Zhiyong Cheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cheng, Zhiyong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009070599 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4913-5734 |
| authorships[2].author.display_name | Xu Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Xu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100711175 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1151-6040 |
| authorships[3].author.display_name | Jinhuan Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Jinhuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5070515519 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8980-4950 |
| authorships[4].author.display_name | Guanfeng Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Guanfeng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032222101 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2909-2565 |
| authorships[5].author.display_name | Junwei Du |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Du, Junwei |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.12152 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Behavior Pattern Mining-based Multi-Behavior Recommendation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13083 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.955299973487854 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Text Analysis Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.12152 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.12152 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.12152 |
| primary_location.id | pmh:oai:arXiv.org:2408.12152 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.12152 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.12152 |
| publication_date | 2024-08-22 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 64, 73, 99, 131 |
| abstract_inverted_index.To | 93 |
| abstract_inverted_index.We | 129 |
| abstract_inverted_index.an | 177 |
| abstract_inverted_index.as | 10, 63, 124, 150 |
| abstract_inverted_index.at | 202 |
| abstract_inverted_index.by | 5, 144 |
| abstract_inverted_index.do | 80 |
| abstract_inverted_index.in | 182, 186 |
| abstract_inverted_index.is | 194 |
| abstract_inverted_index.of | 19, 39, 87, 180, 191 |
| abstract_inverted_index.on | 25, 164 |
| abstract_inverted_index.to | 15, 33, 71, 134, 153, 159 |
| abstract_inverted_index.we | 97 |
| abstract_inverted_index.Our | 109, 161 |
| abstract_inverted_index.The | 189 |
| abstract_inverted_index.and | 13, 91, 119, 184, 199 |
| abstract_inverted_index.due | 158 |
| abstract_inverted_index.for | 54, 126, 197 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.one | 38 |
| abstract_inverted_index.our | 192 |
| abstract_inverted_index.the | 17, 84, 113, 136, 141, 151 |
| abstract_inverted_index.two | 40 |
| abstract_inverted_index.use | 198 |
| abstract_inverted_index.BPMR | 170, 193 |
| abstract_inverted_index.code | 190 |
| abstract_inverted_index.data | 62 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.gap, | 96 |
| abstract_inverted_index.like | 29 |
| abstract_inverted_index.node | 45, 75 |
| abstract_inverted_index.page | 11 |
| abstract_inverted_index.some | 42 |
| abstract_inverted_index.such | 149 |
| abstract_inverted_index.that | 22, 169 |
| abstract_inverted_index.them | 53 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.user | 156 |
| abstract_inverted_index.(such | 9 |
| abstract_inverted_index.among | 89 |
| abstract_inverted_index.graph | 68, 145 |
| abstract_inverted_index.novel | 100 |
| abstract_inverted_index.posed | 143 |
| abstract_inverted_index.these | 78, 122 |
| abstract_inverted_index.three | 165 |
| abstract_inverted_index.users | 90, 118 |
| abstract_inverted_index.views | 12 |
| abstract_inverted_index.while | 58 |
| abstract_inverted_index.before | 51 |
| abstract_inverted_index.bridge | 94 |
| abstract_inverted_index.called | 102 |
| abstract_inverted_index.depend | 23 |
| abstract_inverted_index.derive | 43 |
| abstract_inverted_index.employ | 130 |
| abstract_inverted_index.follow | 37 |
| abstract_inverted_index.graph, | 66 |
| abstract_inverted_index.items, | 120 |
| abstract_inverted_index.items. | 92 |
| abstract_inverted_index.making | 127 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.models | 21 |
| abstract_inverted_index.neural | 69, 146 |
| abstract_inverted_index.openly | 195 |
| abstract_inverted_index.others | 59 |
| abstract_inverted_index.solely | 24 |
| abstract_inverted_index.sparse | 26 |
| abstract_inverted_index.target | 27 |
| abstract_inverted_index.(BPMR). | 108 |
| abstract_inverted_index.248.02% | 185 |
| abstract_inverted_index.268.29% | 181 |
| abstract_inverted_index.NDCG@10 | 187 |
| abstract_inverted_index.Pattern | 104 |
| abstract_inverted_index.achieve | 72 |
| abstract_inverted_index.address | 16 |
| abstract_inverted_index.average | 178 |
| abstract_inverted_index.between | 117 |
| abstract_inverted_index.capture | 155 |
| abstract_inverted_index.diverse | 114 |
| abstract_inverted_index.enhance | 3 |
| abstract_inverted_index.explore | 83 |
| abstract_inverted_index.further | 200 |
| abstract_inverted_index.initial | 44 |
| abstract_inverted_index.methods | 79 |
| abstract_inverted_index.network | 147 |
| abstract_inverted_index.showing | 176 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.unified | 74 |
| abstract_inverted_index.Bayesian | 132 |
| abstract_inverted_index.Behavior | 103 |
| abstract_inverted_index.Existing | 31 |
| abstract_inverted_index.However, | 77 |
| abstract_inverted_index.applying | 67 |
| abstract_inverted_index.approach | 133 |
| abstract_inverted_index.behavior | 49, 88 |
| abstract_inverted_index.datasets | 167 |
| abstract_inverted_index.existing | 173 |
| abstract_inverted_index.features | 125 |
| abstract_inverted_index.metrics. | 188 |
| abstract_inverted_index.networks | 70 |
| abstract_inverted_index.patterns | 86, 116, 123 |
| abstract_inverted_index.process, | 138 |
| abstract_inverted_index.profile, | 57 |
| abstract_inverted_index.research | 201 |
| abstract_inverted_index.Recall@10 | 183 |
| abstract_inverted_index.algorithm | 101 |
| abstract_inverted_index.auxiliary | 7 |
| abstract_inverted_index.behaviors | 8, 28 |
| abstract_inverted_index.inability | 152 |
| abstract_inverted_index.interpret | 60 |
| abstract_inverted_index.intricate | 85 |
| abstract_inverted_index.introduce | 98 |
| abstract_inverted_index.subgraphs | 50 |
| abstract_inverted_index.typically | 36 |
| abstract_inverted_index.utilizing | 121 |
| abstract_inverted_index.accessible | 196 |
| abstract_inverted_index.accurately | 154 |
| abstract_inverted_index.adequately | 82 |
| abstract_inverted_index.approaches | 32 |
| abstract_inverted_index.challenges | 142 |
| abstract_inverted_index.evaluation | 163 |
| abstract_inverted_index.favorites) | 14 |
| abstract_inverted_index.individual | 48 |
| abstract_inverted_index.leveraging | 6 |
| abstract_inverted_index.purchases. | 30 |
| abstract_inverted_index.real-world | 166 |
| abstract_inverted_index.streamline | 135 |
| abstract_inverted_index.algorithms, | 148, 175 |
| abstract_inverted_index.effectively | 139 |
| abstract_inverted_index.extensively | 111 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.integrating | 52 |
| abstract_inverted_index.interaction | 115 |
| abstract_inverted_index.limitations | 18 |
| abstract_inverted_index.outperforms | 172 |
| abstract_inverted_index.preferences | 157 |
| abstract_inverted_index.strategies: | 41 |
| abstract_inverted_index.traditional | 20 |
| abstract_inverted_index.demonstrates | 168 |
| abstract_inverted_index.experimental | 162 |
| abstract_inverted_index.investigates | 112 |
| abstract_inverted_index.mining-based | 105 |
| abstract_inverted_index.circumventing | 140 |
| abstract_inverted_index.comprehensive | 56 |
| abstract_inverted_index.effectiveness | 4 |
| abstract_inverted_index.heterogeneous | 65 |
| abstract_inverted_index.significantly | 171 |
| abstract_inverted_index.Multi-behavior | 0, 106 |
| abstract_inverted_index.Recommendation | 107 |
| abstract_inverted_index.multi-behavior | 34, 61 |
| abstract_inverted_index.recommendation | 1, 137 |
| abstract_inverted_index.over-smoothing. | 160 |
| abstract_inverted_index.recommendations | 35 |
| abstract_inverted_index.representation. | 76 |
| abstract_inverted_index.representations | 46 |
| abstract_inverted_index.recommendations. | 128 |
| abstract_inverted_index.state-of-the-art | 174 |
| abstract_inverted_index.https://github.com/rookitkitlee/BPMR. | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |