Behavior Recognition of Squid Jigger Based on Deep Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/fishes8100502
In recent years, with the development of pelagic fishing, the working environment and monitoring of crew (squid jigger) members have become increasingly important. However, traditional methods of pelagic human observers suffer from high costs, low coverage, poor timeliness, and susceptibility to subjective factors. In contrast, the Electronic Monitoring System (EMS) has advantages such as continuous operation under various weather conditions; more objective, transparent, and efficient data; and less interference with fishing operations. This paper shows how the 3DCNN model, LSTM+ResNet model, and TimeSformer model are applied to video-classification tasks, and for the first time, they are applied to an EMS. In addition, this paper tests and compares the application effects of the three models on video classification, and discusses the advantages and challenges of using them for video recognition. Through experiments, we obtained the accuracy and relevant indicators of video recognition using different models. The research results show that when NUM_FRAMES is set to 8, the LSTM+ResNet-50 model has the best performance, with an accuracy of 88.47%, an F1 score of 0.8881, and an map score of 0.8133. Analyzing the EMS for pelagic fishing can improve China’s performance level and management efficiency in pelagic fishing, and promote the development of the fishery knowledge service system and smart fishery engineering.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/fishes8100502
- https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362
- OA Status
- gold
- Cited By
- 4
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387454308
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387454308Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/fishes8100502Digital Object Identifier
- Title
-
Behavior Recognition of Squid Jigger Based on Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-08Full publication date if available
- Authors
-
Yifan Song, Shengmao Zhang, Fenghua Tang, Yongchuang Shi, Yumei Wu, Jianwen He, Yunyun Chen, Lin LiList of authors in order
- Landing page
-
https://doi.org/10.3390/fishes8100502Publisher landing page
- PDF URL
-
https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362Direct OA link when available
- Concepts
-
Pelagic zone, Crew, Fishing, Computer science, Identifier, Artificial intelligence, Machine learning, Real-time computing, Fishery, Engineering, Aeronautics, Programming language, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387454308 |
|---|---|
| doi | https://doi.org/10.3390/fishes8100502 |
| ids.doi | https://doi.org/10.3390/fishes8100502 |
| ids.openalex | https://openalex.org/W4387454308 |
| fwci | 1.08987952 |
| type | article |
| title | Behavior Recognition of Squid Jigger Based on Deep Learning |
| biblio.issue | 10 |
| biblio.volume | 8 |
| biblio.last_page | 502 |
| biblio.first_page | 502 |
| topics[0].id | https://openalex.org/T11622 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.96670001745224 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Maritime Navigation and Safety |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9380000233650208 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T12697 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9230999946594238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water Quality Monitoring Technologies |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C77942228 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8123698234558105 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q191468 |
| concepts[0].display_name | Pelagic zone |
| concepts[1].id | https://openalex.org/C2780179797 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7676489949226379 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q345844 |
| concepts[1].display_name | Crew |
| concepts[2].id | https://openalex.org/C514101110 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6949637532234192 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14373 |
| concepts[2].display_name | Fishing |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6248210668563843 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154504017 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44180846214294434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q853614 |
| concepts[4].display_name | Identifier |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43768760561943054 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38906383514404297 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C79403827 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3436415493488312 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[7].display_name | Real-time computing |
| concepts[8].id | https://openalex.org/C505870484 |
| concepts[8].level | 1 |
| concepts[8].score | 0.28715699911117554 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180538 |
| concepts[8].display_name | Fishery |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23316848278045654 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C178802073 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1483381688594818 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8421 |
| concepts[10].display_name | Aeronautics |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/pelagic-zone |
| keywords[0].score | 0.8123698234558105 |
| keywords[0].display_name | Pelagic zone |
| keywords[1].id | https://openalex.org/keywords/crew |
| keywords[1].score | 0.7676489949226379 |
| keywords[1].display_name | Crew |
| keywords[2].id | https://openalex.org/keywords/fishing |
| keywords[2].score | 0.6949637532234192 |
| keywords[2].display_name | Fishing |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6248210668563843 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/identifier |
| keywords[4].score | 0.44180846214294434 |
| keywords[4].display_name | Identifier |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.43768760561943054 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.38906383514404297 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/real-time-computing |
| keywords[7].score | 0.3436415493488312 |
| keywords[7].display_name | Real-time computing |
| keywords[8].id | https://openalex.org/keywords/fishery |
| keywords[8].score | 0.28715699911117554 |
| keywords[8].display_name | Fishery |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.23316848278045654 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/aeronautics |
| keywords[10].score | 0.1483381688594818 |
| keywords[10].display_name | Aeronautics |
| language | en |
| locations[0].id | doi:10.3390/fishes8100502 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210229736 |
| locations[0].source.issn | 2410-3888 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2410-3888 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Fishes |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Fishes |
| locations[0].landing_page_url | https://doi.org/10.3390/fishes8100502 |
| locations[1].id | pmh:oai:doaj.org/article:c661ca3c77a34268be02f6248104a78f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Fishes, Vol 8, Iss 10, p 502 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/c661ca3c77a34268be02f6248104a78f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5001735281 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9290-2065 |
| authorships[0].author.display_name | Yifan Song |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I44675526 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information, Shanghai Ocean University, Shanghai 201306, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[0].institutions[0].id | https://openalex.org/I46529539 |
| authorships[0].institutions[0].ror | https://ror.org/02bwk9n38 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Fishery Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[0].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[0].institutions[2].id | https://openalex.org/I44675526 |
| authorships[0].institutions[2].ror | https://ror.org/04n40zv07 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I44675526 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Shanghai Ocean University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yifan Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information, Shanghai Ocean University, Shanghai 201306, China, Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[1].author.id | https://openalex.org/A5042221643 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4233-1097 |
| authorships[1].author.display_name | Shengmao Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[1].institutions[0].id | https://openalex.org/I46529539 |
| authorships[1].institutions[0].ror | https://ror.org/02bwk9n38 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Fishery Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[1].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shengmao Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[2].author.id | https://openalex.org/A5113108891 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fenghua Tang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[2].institutions[0].id | https://openalex.org/I46529539 |
| authorships[2].institutions[0].ror | https://ror.org/02bwk9n38 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Fishery Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[2].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fenghua Tang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[3].author.id | https://openalex.org/A5041052275 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7196-6334 |
| authorships[3].author.display_name | Yongchuang Shi |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[3].institutions[0].id | https://openalex.org/I46529539 |
| authorships[3].institutions[0].ror | https://ror.org/02bwk9n38 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Fishery Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[3].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yongchuang Shi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[4].author.id | https://openalex.org/A5025323494 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2640-6722 |
| authorships[4].author.display_name | Yumei Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[4].institutions[0].id | https://openalex.org/I46529539 |
| authorships[4].institutions[0].ror | https://ror.org/02bwk9n38 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Fishery Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[4].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yumei Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Fisheries Remote Sensing, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China |
| authorships[5].author.id | https://openalex.org/A5100893406 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jianwen He |
| authorships[5].affiliations[0].raw_affiliation_string | China Agricultural Development Group Zhoushan Ocean Fishing Co., Ltd., Zhoushan 316100, China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianwen He |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China Agricultural Development Group Zhoushan Ocean Fishing Co., Ltd., Zhoushan 316100, China |
| authorships[6].author.id | https://openalex.org/A5027760008 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yunyun Chen |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210131447 |
| authorships[6].affiliations[0].raw_affiliation_string | China Aquatic Products Zhoushan Marine Fisheries Corporation Co., Ltd., Zhoushan 316100, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210131447 |
| authorships[6].institutions[0].ror | https://ror.org/02wt5t905 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210131447 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhejiang Marine Fisheries Research Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yunyun Chen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | China Aquatic Products Zhoushan Marine Fisheries Corporation Co., Ltd., Zhoushan 316100, China |
| authorships[7].author.id | https://openalex.org/A5100383305 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Lin Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210144143 |
| authorships[7].affiliations[0].raw_affiliation_string | Inspur Group Co., Ltd., Jinan 250000, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210144143 |
| authorships[7].institutions[0].ror | https://ror.org/0474p4r72 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210144143 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Inspur (China) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Lin Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Inspur Group Co., Ltd., Jinan 250000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Behavior Recognition of Squid Jigger Based on Deep Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11622 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.96670001745224 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Maritime Navigation and Safety |
| related_works | https://openalex.org/W1230495041, https://openalex.org/W2981238890, https://openalex.org/W3201287350, https://openalex.org/W4240570950, https://openalex.org/W3204452099, https://openalex.org/W2130466874, https://openalex.org/W258179848, https://openalex.org/W151463827, https://openalex.org/W2157145083, https://openalex.org/W2192339032 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/fishes8100502 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210229736 |
| best_oa_location.source.issn | 2410-3888 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2410-3888 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Fishes |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Fishes |
| best_oa_location.landing_page_url | https://doi.org/10.3390/fishes8100502 |
| primary_location.id | doi:10.3390/fishes8100502 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210229736 |
| primary_location.source.issn | 2410-3888 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2410-3888 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Fishes |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2410-3888/8/10/502/pdf?version=1696767362 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Fishes |
| primary_location.landing_page_url | https://doi.org/10.3390/fishes8100502 |
| publication_date | 2023-10-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4288710352, https://openalex.org/W2115661873, https://openalex.org/W4364379652, https://openalex.org/W4205364058, https://openalex.org/W1983364832, https://openalex.org/W6839222431, https://openalex.org/W3010779223, https://openalex.org/W2235034809, https://openalex.org/W3035254087, https://openalex.org/W6790307280, https://openalex.org/W3133428285, https://openalex.org/W4312723735, https://openalex.org/W3043840704, https://openalex.org/W2963563276, https://openalex.org/W3160264863, https://openalex.org/W2891874376, https://openalex.org/W3128600857, https://openalex.org/W2997322661, https://openalex.org/W2929634766, https://openalex.org/W3000274549, https://openalex.org/W2526417872, https://openalex.org/W3126721948, https://openalex.org/W3100255860, https://openalex.org/W4382467086 |
| referenced_works_count | 24 |
| abstract_inverted_index.8, | 154 |
| abstract_inverted_index.F1 | 168 |
| abstract_inverted_index.In | 0, 43, 100 |
| abstract_inverted_index.an | 98, 163, 167, 173 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.in | 192 |
| abstract_inverted_index.is | 151 |
| abstract_inverted_index.of | 6, 14, 26, 110, 123, 138, 165, 170, 176, 199 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 40, 86, 97, 153 |
| abstract_inverted_index.we | 131 |
| abstract_inverted_index.EMS | 180 |
| abstract_inverted_index.The | 144 |
| abstract_inverted_index.and | 12, 38, 63, 66, 81, 89, 105, 117, 121, 135, 172, 189, 195, 205 |
| abstract_inverted_index.are | 84, 95 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 90, 126, 181 |
| abstract_inverted_index.has | 50, 158 |
| abstract_inverted_index.how | 75 |
| abstract_inverted_index.low | 34 |
| abstract_inverted_index.map | 174 |
| abstract_inverted_index.set | 152 |
| abstract_inverted_index.the | 4, 9, 45, 76, 91, 107, 111, 119, 133, 155, 159, 179, 197, 200 |
| abstract_inverted_index.EMS. | 99 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.best | 160 |
| abstract_inverted_index.crew | 15 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.high | 32 |
| abstract_inverted_index.less | 67 |
| abstract_inverted_index.more | 60 |
| abstract_inverted_index.poor | 36 |
| abstract_inverted_index.show | 147 |
| abstract_inverted_index.such | 52 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.them | 125 |
| abstract_inverted_index.they | 94 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.when | 149 |
| abstract_inverted_index.with | 3, 69, 162 |
| abstract_inverted_index.(EMS) | 49 |
| abstract_inverted_index.3DCNN | 77 |
| abstract_inverted_index.data; | 65 |
| abstract_inverted_index.first | 92 |
| abstract_inverted_index.human | 28 |
| abstract_inverted_index.level | 188 |
| abstract_inverted_index.model | 83, 157 |
| abstract_inverted_index.paper | 73, 103 |
| abstract_inverted_index.score | 169, 175 |
| abstract_inverted_index.shows | 74 |
| abstract_inverted_index.smart | 206 |
| abstract_inverted_index.tests | 104 |
| abstract_inverted_index.three | 112 |
| abstract_inverted_index.time, | 93 |
| abstract_inverted_index.under | 56 |
| abstract_inverted_index.using | 124, 141 |
| abstract_inverted_index.video | 115, 127, 139 |
| abstract_inverted_index.(squid | 16 |
| abstract_inverted_index.System | 48 |
| abstract_inverted_index.become | 20 |
| abstract_inverted_index.costs, | 33 |
| abstract_inverted_index.model, | 78, 80 |
| abstract_inverted_index.models | 113 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.suffer | 30 |
| abstract_inverted_index.system | 204 |
| abstract_inverted_index.tasks, | 88 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.0.8133. | 177 |
| abstract_inverted_index.0.8881, | 171 |
| abstract_inverted_index.88.47%, | 166 |
| abstract_inverted_index.Through | 129 |
| abstract_inverted_index.applied | 85, 96 |
| abstract_inverted_index.effects | 109 |
| abstract_inverted_index.fishery | 201, 207 |
| abstract_inverted_index.fishing | 70, 183 |
| abstract_inverted_index.improve | 185 |
| abstract_inverted_index.jigger) | 17 |
| abstract_inverted_index.members | 18 |
| abstract_inverted_index.methods | 25 |
| abstract_inverted_index.models. | 143 |
| abstract_inverted_index.pelagic | 7, 27, 182, 193 |
| abstract_inverted_index.promote | 196 |
| abstract_inverted_index.results | 146 |
| abstract_inverted_index.service | 203 |
| abstract_inverted_index.various | 57 |
| abstract_inverted_index.weather | 58 |
| abstract_inverted_index.working | 10 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.accuracy | 134, 164 |
| abstract_inverted_index.compares | 106 |
| abstract_inverted_index.factors. | 42 |
| abstract_inverted_index.fishing, | 8, 194 |
| abstract_inverted_index.obtained | 132 |
| abstract_inverted_index.relevant | 136 |
| abstract_inverted_index.research | 145 |
| abstract_inverted_index.Analyzing | 178 |
| abstract_inverted_index.China’s | 186 |
| abstract_inverted_index.addition, | 101 |
| abstract_inverted_index.contrast, | 44 |
| abstract_inverted_index.coverage, | 35 |
| abstract_inverted_index.different | 142 |
| abstract_inverted_index.discusses | 118 |
| abstract_inverted_index.efficient | 64 |
| abstract_inverted_index.knowledge | 202 |
| abstract_inverted_index.observers | 29 |
| abstract_inverted_index.operation | 55 |
| abstract_inverted_index.Electronic | 46 |
| abstract_inverted_index.Monitoring | 47 |
| abstract_inverted_index.NUM_FRAMES | 150 |
| abstract_inverted_index.advantages | 51, 120 |
| abstract_inverted_index.challenges | 122 |
| abstract_inverted_index.continuous | 54 |
| abstract_inverted_index.efficiency | 191 |
| abstract_inverted_index.important. | 22 |
| abstract_inverted_index.indicators | 137 |
| abstract_inverted_index.management | 190 |
| abstract_inverted_index.monitoring | 13 |
| abstract_inverted_index.objective, | 61 |
| abstract_inverted_index.subjective | 41 |
| abstract_inverted_index.LSTM+ResNet | 79 |
| abstract_inverted_index.TimeSformer | 82 |
| abstract_inverted_index.application | 108 |
| abstract_inverted_index.conditions; | 59 |
| abstract_inverted_index.development | 5, 198 |
| abstract_inverted_index.environment | 11 |
| abstract_inverted_index.operations. | 71 |
| abstract_inverted_index.performance | 187 |
| abstract_inverted_index.recognition | 140 |
| abstract_inverted_index.timeliness, | 37 |
| abstract_inverted_index.traditional | 24 |
| abstract_inverted_index.engineering. | 208 |
| abstract_inverted_index.experiments, | 130 |
| abstract_inverted_index.increasingly | 21 |
| abstract_inverted_index.interference | 68 |
| abstract_inverted_index.performance, | 161 |
| abstract_inverted_index.recognition. | 128 |
| abstract_inverted_index.transparent, | 62 |
| abstract_inverted_index.LSTM+ResNet-50 | 156 |
| abstract_inverted_index.susceptibility | 39 |
| abstract_inverted_index.classification, | 116 |
| abstract_inverted_index.video-classification | 87 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5042221643 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210151987, https://openalex.org/I46529539 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.74352265 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |