BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.09546
The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. While current synthetic data generators offer a promising alternative, particularly for embodied AI tasks, they often fall short for computer vision tasks due to low asset and rendering quality, limited diversity, and unrealistic physical properties. We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K. BVS supports a large number of adjustable parameters at the scene level (e.g., lighting, object placement), the object level (e.g., joint configuration, attributes such as "filled" and "folded"), and the camera level (e.g., field of view, focal length). Researchers can arbitrarily vary these parameters during data generation to perform controlled experiments. We showcase three example application scenarios: systematically evaluating the robustness of models across different continuous axes of domain shift, evaluating scene understanding models on the same set of images, and training and evaluating simulation-to-real transfer for a novel vision task: unary and binary state prediction. Project website: https://behavior-vision-suite.github.io/
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.09546
- https://arxiv.org/pdf/2405.09546
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396987757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396987757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.09546Digital Object Identifier
- Title
-
BEHAVIOR Vision Suite: Customizable Dataset Generation via SimulationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-15Full publication date if available
- Authors
-
Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gökmen, Chengshu Li, Wensi Ai, Benjamin Martinez, Arman Aydin, Mona Anvari, Ayush K Chakravarthy, Hong-Xing Yu, Josiah Wong, Sanjana Srivastava, Sharon Lee, Shengxin Zha, Laurent Itti, Yunzhu Li, Roberto Martín-Martín, Miao Liu, Pengchuan Zhang, Ruohan Zhang, Li Fei-Fei, Jiajun WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.09546Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.09546Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.09546Direct OA link when available
- Concepts
-
Suite, Computer science, Artificial intelligence, Computer vision, Computer graphics (images), Human–computer interaction, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396987757 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.09546 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.09546 |
| ids.openalex | https://openalex.org/W4396987757 |
| fwci | |
| type | preprint |
| title | BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6481999754905701 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79581498 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9181292057037354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1367530 |
| concepts[0].display_name | Suite |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6525177955627441 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4882690906524658 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4140205383300781 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C121684516 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3699515163898468 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[4].display_name | Computer graphics (images) |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36112359166145325 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.10865825414657593 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C166957645 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[7].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/suite |
| keywords[0].score | 0.9181292057037354 |
| keywords[0].display_name | Suite |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6525177955627441 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4882690906524658 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.4140205383300781 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-graphics |
| keywords[4].score | 0.3699515163898468 |
| keywords[4].display_name | Computer graphics (images) |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.36112359166145325 |
| keywords[5].display_name | Human–computer interaction |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.10865825414657593 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.09546 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.09546 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.09546 |
| locations[1].id | doi:10.48550/arxiv.2405.09546 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.09546 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038696465 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8110-9280 |
| authorships[0].author.display_name | Yunhao Ge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ge, Yunhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054096627 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yihe Tang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tang, Yihe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101890240 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6300-3629 |
| authorships[2].author.display_name | Jiashu Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Jiashu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5052210411 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Cem Gökmen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gokmen, Cem |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101559280 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9027-8617 |
| authorships[4].author.display_name | Chengshu Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Chengshu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086527334 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Wensi Ai |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ai, Wensi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5111937477 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Benjamin Martinez |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Martinez, Benjamin Jose |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101355250 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Arman Aydin |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Aydin, Arman |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5113395484 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Mona Anvari |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Anvari, Mona |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5110984564 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Ayush K Chakravarthy |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Chakravarthy, Ayush K |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100647862 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3093-5467 |
| authorships[10].author.display_name | Hong-Xing Yu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Yu, Hong-Xing |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5013982994 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Josiah Wong |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Wong, Josiah |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5110792405 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Sanjana Srivastava |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Srivastava, Sanjana |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5108094345 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Sharon Lee |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Lee, Sharon |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5024126587 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-9711-4447 |
| authorships[14].author.display_name | Shengxin Zha |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Zha, Shengxin |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5054494771 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-0168-2977 |
| authorships[15].author.display_name | Laurent Itti |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Itti, Laurent |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5112463246 |
| authorships[16].author.orcid | |
| authorships[16].author.display_name | Yunzhu Li |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Li, Yunzhu |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5065655761 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-9586-2759 |
| authorships[17].author.display_name | Roberto Martín-Martín |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Martín-Martín, Roberto |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5100348904 |
| authorships[18].author.orcid | https://orcid.org/0000-0002-6650-9972 |
| authorships[18].author.display_name | Miao Liu |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Liu, Miao |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5059735251 |
| authorships[19].author.orcid | https://orcid.org/0000-0003-1155-9507 |
| authorships[19].author.display_name | Pengchuan Zhang |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Zhang, Pengchuan |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5070080154 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-7597-7700 |
| authorships[20].author.display_name | Ruohan Zhang |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Zhang, Ruohan |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5100450462 |
| authorships[21].author.orcid | https://orcid.org/0000-0002-7481-0810 |
| authorships[21].author.display_name | Li Fei-Fei |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Fei-Fei, Li |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5100621605 |
| authorships[22].author.orcid | https://orcid.org/0000-0002-4176-343X |
| authorships[22].author.display_name | Jiajun Wu |
| authorships[22].author_position | last |
| authorships[22].raw_author_name | Wu, Jiajun |
| authorships[22].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.09546 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6481999754905701 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.09546 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.09546 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.09546 |
| primary_location.id | pmh:oai:arXiv.org:2405.09546 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.09546 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.09546 |
| publication_date | 2024-05-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 70, 100, 185 |
| abstract_inverted_index.AI | 40, 95 |
| abstract_inverted_index.We | 63, 149 |
| abstract_inverted_index.as | 122 |
| abstract_inverted_index.at | 106 |
| abstract_inverted_index.of | 5, 15, 72, 85, 103, 132, 159, 165, 176 |
| abstract_inverted_index.on | 90, 172 |
| abstract_inverted_index.to | 51, 76, 145 |
| abstract_inverted_index.BVS | 98 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 3, 19, 54, 59, 74, 124, 126, 178, 180, 190 |
| abstract_inverted_index.can | 137 |
| abstract_inverted_index.due | 50 |
| abstract_inverted_index.for | 38, 46, 82, 184 |
| abstract_inverted_index.low | 52 |
| abstract_inverted_index.set | 71, 175 |
| abstract_inverted_index.the | 65, 91, 107, 114, 127, 157, 173 |
| abstract_inverted_index.axes | 164 |
| abstract_inverted_index.data | 16, 31, 81, 143 |
| abstract_inverted_index.fall | 44 |
| abstract_inverted_index.same | 174 |
| abstract_inverted_index.such | 121 |
| abstract_inverted_index.they | 42 |
| abstract_inverted_index.vary | 139 |
| abstract_inverted_index.with | 17 |
| abstract_inverted_index.Suite | 68 |
| abstract_inverted_index.While | 28 |
| abstract_inverted_index.asset | 53 |
| abstract_inverted_index.based | 89 |
| abstract_inverted_index.field | 131 |
| abstract_inverted_index.focal | 134 |
| abstract_inverted_index.fully | 78 |
| abstract_inverted_index.joint | 118 |
| abstract_inverted_index.large | 13, 101 |
| abstract_inverted_index.level | 109, 116, 129 |
| abstract_inverted_index.newly | 92 |
| abstract_inverted_index.novel | 186 |
| abstract_inverted_index.offer | 33 |
| abstract_inverted_index.often | 43 |
| abstract_inverted_index.scene | 108, 169 |
| abstract_inverted_index.short | 45 |
| abstract_inverted_index.state | 192 |
| abstract_inverted_index.task: | 188 |
| abstract_inverted_index.tasks | 49 |
| abstract_inverted_index.these | 140 |
| abstract_inverted_index.three | 151 |
| abstract_inverted_index.tools | 73 |
| abstract_inverted_index.unary | 189 |
| abstract_inverted_index.under | 9 |
| abstract_inverted_index.view, | 133 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.(BVS), | 69 |
| abstract_inverted_index.(e.g., | 110, 117, 130 |
| abstract_inverted_index.Vision | 67 |
| abstract_inverted_index.across | 161 |
| abstract_inverted_index.assets | 75 |
| abstract_inverted_index.binary | 191 |
| abstract_inverted_index.camera | 128 |
| abstract_inverted_index.domain | 166 |
| abstract_inverted_index.during | 142 |
| abstract_inverted_index.models | 8, 160, 171 |
| abstract_inverted_index.number | 102 |
| abstract_inverted_index.object | 112, 115 |
| abstract_inverted_index.rarely | 26 |
| abstract_inverted_index.shift, | 167 |
| abstract_inverted_index.tasks, | 41 |
| abstract_inverted_index.vision | 7, 24, 48, 87, 187 |
| abstract_inverted_index.Project | 194 |
| abstract_inverted_index.amounts | 14 |
| abstract_inverted_index.current | 29 |
| abstract_inverted_index.example | 152 |
| abstract_inverted_index.images, | 177 |
| abstract_inverted_index.labels, | 21 |
| abstract_inverted_index.limited | 57 |
| abstract_inverted_index.models, | 88 |
| abstract_inverted_index.perform | 146 |
| abstract_inverted_index.require | 12 |
| abstract_inverted_index.varying | 10 |
| abstract_inverted_index."filled" | 123 |
| abstract_inverted_index.BEHAVIOR | 66 |
| abstract_inverted_index.computer | 6, 47, 86 |
| abstract_inverted_index.datasets | 25 |
| abstract_inverted_index.embodied | 39, 94 |
| abstract_inverted_index.generate | 77 |
| abstract_inverted_index.length). | 135 |
| abstract_inverted_index.physical | 61 |
| abstract_inverted_index.quality, | 56 |
| abstract_inverted_index.satisfy. | 27 |
| abstract_inverted_index.showcase | 150 |
| abstract_inverted_index.supports | 99 |
| abstract_inverted_index.training | 179 |
| abstract_inverted_index.transfer | 183 |
| abstract_inverted_index.website: | 195 |
| abstract_inverted_index.developed | 93 |
| abstract_inverted_index.different | 162 |
| abstract_inverted_index.introduce | 64 |
| abstract_inverted_index.lighting, | 111 |
| abstract_inverted_index.promising | 35 |
| abstract_inverted_index.rendering | 55 |
| abstract_inverted_index.synthetic | 30, 80 |
| abstract_inverted_index."folded"), | 125 |
| abstract_inverted_index.adjustable | 104 |
| abstract_inverted_index.attributes | 120 |
| abstract_inverted_index.benchmark, | 96 |
| abstract_inverted_index.conditions | 11 |
| abstract_inverted_index.continuous | 163 |
| abstract_inverted_index.controlled | 147 |
| abstract_inverted_index.customized | 20, 79 |
| abstract_inverted_index.diversity, | 58 |
| abstract_inverted_index.evaluating | 156, 168, 181 |
| abstract_inverted_index.evaluation | 2, 84 |
| abstract_inverted_index.generation | 144 |
| abstract_inverted_index.generators | 32 |
| abstract_inverted_index.parameters | 105, 141 |
| abstract_inverted_index.real-world | 23 |
| abstract_inverted_index.robustness | 158 |
| abstract_inverted_index.scenarios: | 154 |
| abstract_inverted_index.systematic | 1, 83 |
| abstract_inverted_index.Researchers | 136 |
| abstract_inverted_index.application | 153 |
| abstract_inverted_index.arbitrarily | 138 |
| abstract_inverted_index.placement), | 113 |
| abstract_inverted_index.prediction. | 193 |
| abstract_inverted_index.properties. | 62 |
| abstract_inverted_index.unrealistic | 60 |
| abstract_inverted_index.BEHAVIOR-1K. | 97 |
| abstract_inverted_index.alternative, | 36 |
| abstract_inverted_index.experiments. | 148 |
| abstract_inverted_index.particularly | 37 |
| abstract_inverted_index.comprehensive | 18 |
| abstract_inverted_index.understanding | 4, 170 |
| abstract_inverted_index.configuration, | 119 |
| abstract_inverted_index.systematically | 155 |
| abstract_inverted_index.simulation-to-real | 182 |
| abstract_inverted_index.https://behavior-vision-suite.github.io/ | 196 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 23 |
| citation_normalized_percentile |