Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/tnsre.2025.3586175
Shifts in data distribution across time can strongly affect early classification of time-series data. When decoding behavior from neural activity, early detection of behavior may help in devising corrective neural stimulation before the onset of behavior. Recurrent neural networks are common models for sequence data. However, standard recurrent neural networks are not able to handle data with temporal distributional shifts to guarantee robust classification across time. To enable the network to utilize all temporal features of the neural input data, and to enhance the memory of recurrent neural networks, this paper proposes a novel approach: recurrent neural networks with time-varying weights, here termed Time-varying recurrent neural networks. These models are able to not only predict the class of the time-sequence correctly, but also lead to accurate classification earlier in the sequence than standard recurrent neural networks, while also stabilizing gradient dynamics. This paper focuses on early sequential classification of spatially distributed neural activity across time using Time-varying recurrent neural networks applied to a variety of neural data from mice and humans, as subjects perform motor tasks. Time-varying recurrent neural networks detect self-initiated lever-pull behavior up to 6 seconds before behavior onset-3 seconds earlier than standard recurrent neural networks. Finally, this paper explored the contribution of different brain regions on behavior classification using SHapley Additive exPlanation value, and found that the somatosensory and premotor regions play a large role in behavioral classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnsre.2025.3586175
- OA Status
- diamond
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412030621
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412030621Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnsre.2025.3586175Digital Object Identifier
- Title
-
Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yongxu Zhang, Catalin Mitelut, David J. Arpin, David E. Vaillancourt, Timothy H. Murphy, Shreya SaxenaList of authors in order
- Landing page
-
https://doi.org/10.1109/tnsre.2025.3586175Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/tnsre.2025.3586175Direct OA link when available
- Concepts
-
Artificial neural network, Artificial intelligence, Computer science, Pattern recognition (psychology), Neuroscience, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412030621 |
|---|---|
| doi | https://doi.org/10.1109/tnsre.2025.3586175 |
| ids.doi | https://doi.org/10.1109/tnsre.2025.3586175 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40614145 |
| ids.openalex | https://openalex.org/W4412030621 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D016571 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Neural Networks, Computer |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000818 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Animals |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D051379 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Mice |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D013997 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Time Factors |
| mesh[6].qualifier_ui | Q000502 |
| mesh[6].descriptor_ui | D001519 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | physiology |
| mesh[6].descriptor_name | Behavior |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008297 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Male |
| mesh[8].qualifier_ui | Q000502 |
| mesh[8].descriptor_ui | D001522 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | physiology |
| mesh[8].descriptor_name | Behavior, Animal |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000098424 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Recurrent Neural Networks |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D016571 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Neural Networks, Computer |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000818 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Animals |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D051379 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Mice |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D013997 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Time Factors |
| mesh[16].qualifier_ui | Q000502 |
| mesh[16].descriptor_ui | D001519 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | physiology |
| mesh[16].descriptor_name | Behavior |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | Q000502 |
| mesh[18].descriptor_ui | D001522 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | physiology |
| mesh[18].descriptor_name | Behavior, Animal |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000098424 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Recurrent Neural Networks |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D016571 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Neural Networks, Computer |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000818 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Animals |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D051379 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Mice |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000465 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Algorithms |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D013997 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Time Factors |
| mesh[26].qualifier_ui | Q000502 |
| mesh[26].descriptor_ui | D001519 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | physiology |
| mesh[26].descriptor_name | Behavior |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008297 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Male |
| mesh[28].qualifier_ui | Q000502 |
| mesh[28].descriptor_ui | D001522 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | physiology |
| mesh[28].descriptor_name | Behavior, Animal |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000098424 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Recurrent Neural Networks |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D016571 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Neural Networks, Computer |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D006801 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Humans |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000818 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Animals |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D051379 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Mice |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000465 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Algorithms |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D013997 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Time Factors |
| mesh[36].qualifier_ui | Q000502 |
| mesh[36].descriptor_ui | D001519 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | physiology |
| mesh[36].descriptor_name | Behavior |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D008297 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Male |
| mesh[38].qualifier_ui | Q000502 |
| mesh[38].descriptor_ui | D001522 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | physiology |
| mesh[38].descriptor_name | Behavior, Animal |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000098424 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Recurrent Neural Networks |
| type | article |
| title | Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural Networks |
| awards[0].id | https://openalex.org/G958895572 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01 NS058487 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G909420537 |
| awards[1].funder_id | https://openalex.org/F4320306076 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2219876 |
| awards[1].funder_display_name | National Science Foundation |
| awards[2].id | https://openalex.org/G6412127804 |
| awards[2].funder_id | https://openalex.org/F4320332161 |
| awards[2].display_name | |
| awards[2].funder_award_id | R01 NS052318 |
| awards[2].funder_display_name | National Institutes of Health |
| awards[3].id | https://openalex.org/G3939785143 |
| awards[3].funder_id | https://openalex.org/F4320332161 |
| awards[3].display_name | |
| awards[3].funder_award_id | 7RF1DA056377-02 |
| awards[3].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 33 |
| biblio.last_page | 2649 |
| biblio.first_page | 2638 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10581 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Neural dynamics and brain function |
| topics[2].id | https://openalex.org/T10042 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural and Behavioral Psychology Studies |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6803165674209595 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5529954433441162 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5004816055297852 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.36805206537246704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C169760540 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32434552907943726 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[4].display_name | Neuroscience |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3015940189361572 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6803165674209595 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5529954433441162 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5004816055297852 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.36805206537246704 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/neuroscience |
| keywords[4].score | 0.32434552907943726 |
| keywords[4].display_name | Neuroscience |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.3015940189361572 |
| keywords[5].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1109/tnsre.2025.3586175 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S98183460 |
| locations[0].source.issn | 1534-4320, 1558-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-4320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tnsre.2025.3586175 |
| locations[1].id | pmid:40614145 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40614145 |
| locations[2].id | pmh:oai:doaj.org/article:a7890856c64c44a49d658ee4a717258a |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 33, Pp 2638-2649 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/a7890856c64c44a49d658ee4a717258a |
| locations[3].id | pmh:oai:europepmc.org:11209144 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12398402 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5065745151 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-3251-4248 |
| authorships[0].author.display_name | Yongxu Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Yale University, New Haven, CT, USA |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongxu Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, Yale University, New Haven, CT, USA |
| authorships[1].author.id | https://openalex.org/A5072148140 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0471-9816 |
| authorships[1].author.display_name | Catalin Mitelut |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biology, New York University, New York, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I57206974 |
| authorships[1].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | New York University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Catalin Mitelut |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biology, New York University, New York, NY, USA |
| authorships[2].author.id | https://openalex.org/A5040034624 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6442-1205 |
| authorships[2].author.display_name | David J. Arpin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA |
| authorships[2].institutions[0].id | https://openalex.org/I33213144 |
| authorships[2].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David J. Arpin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA |
| authorships[3].author.id | https://openalex.org/A5019592840 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5663-6476 |
| authorships[3].author.display_name | David E. Vaillancourt |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA |
| authorships[3].institutions[0].id | https://openalex.org/I33213144 |
| authorships[3].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Florida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Vaillancourt |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA |
| authorships[4].author.id | https://openalex.org/A5072258662 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0093-4490 |
| authorships[4].author.display_name | Timothy H. Murphy |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Psychiatry, Kinsmen Laboratory of Neurological Research, The University of British Columbia, Vancouver, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I141945490 |
| authorships[4].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of British Columbia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Timothy Murphy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Psychiatry, Kinsmen Laboratory of Neurological Research, The University of British Columbia, Vancouver, Canada |
| authorships[5].author.id | https://openalex.org/A5022362167 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4655-7050 |
| authorships[5].author.display_name | Shreya Saxena |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Yale University, New Haven, CT, USA |
| authorships[5].institutions[0].id | https://openalex.org/I32971472 |
| authorships[5].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Yale University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shreya Saxena |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Engineering, Yale University, New Haven, CT, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/tnsre.2025.3586175 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2931662336, https://openalex.org/W4220667126, https://openalex.org/W2077865380, https://openalex.org/W3006817050, https://openalex.org/W4401768695, https://openalex.org/W2765597752, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1109/tnsre.2025.3586175 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S98183460 |
| best_oa_location.source.issn | 1534-4320, 1558-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-4320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnsre.2025.3586175 |
| primary_location.id | doi:10.1109/tnsre.2025.3586175 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S98183460 |
| primary_location.source.issn | 1534-4320, 1558-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-4320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tnsre.2025.3586175 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2025271685, https://openalex.org/W4361294979, https://openalex.org/W4392747208, https://openalex.org/W2765566334, https://openalex.org/W4308061498, https://openalex.org/W4200099737, https://openalex.org/W1997102766, https://openalex.org/W3197488239, https://openalex.org/W4387717386, https://openalex.org/W4283259549, https://openalex.org/W4404703782, https://openalex.org/W4408960607, https://openalex.org/W4388248293, https://openalex.org/W4390167891, https://openalex.org/W4398765962, https://openalex.org/W2078765398, https://openalex.org/W4285136059, https://openalex.org/W4379508858, https://openalex.org/W6846964422, https://openalex.org/W2798658180, https://openalex.org/W6683633756, https://openalex.org/W2908124316, https://openalex.org/W2883380036, https://openalex.org/W6740105937, https://openalex.org/W2119327830, https://openalex.org/W3205967813, https://openalex.org/W4386477915, https://openalex.org/W3185645817, https://openalex.org/W3087357898, https://openalex.org/W4385245566, https://openalex.org/W4289538860, https://openalex.org/W6749825310, https://openalex.org/W2110065044, https://openalex.org/W6737947904, https://openalex.org/W6734194636, https://openalex.org/W2584632106, https://openalex.org/W3021105102, https://openalex.org/W2976024218, https://openalex.org/W3015863411, https://openalex.org/W1594054574, https://openalex.org/W2031170841, https://openalex.org/W2069824804, https://openalex.org/W6779575948, https://openalex.org/W4241832412, https://openalex.org/W2792764867, https://openalex.org/W4200272417 |
| referenced_works_count | 46 |
| abstract_inverted_index.6 | 186 |
| abstract_inverted_index.a | 92, 162, 225 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.as | 171 |
| abstract_inverted_index.in | 1, 26, 128, 228 |
| abstract_inverted_index.of | 11, 22, 34, 75, 85, 117, 148, 164, 204 |
| abstract_inverted_index.on | 144, 208 |
| abstract_inverted_index.to | 53, 60, 70, 81, 111, 124, 161, 185 |
| abstract_inverted_index.up | 184 |
| abstract_inverted_index.all | 72 |
| abstract_inverted_index.and | 80, 169, 216, 221 |
| abstract_inverted_index.are | 39, 50, 109 |
| abstract_inverted_index.but | 121 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.may | 24 |
| abstract_inverted_index.not | 51, 112 |
| abstract_inverted_index.the | 32, 68, 76, 83, 115, 118, 129, 202, 219 |
| abstract_inverted_index.This | 141 |
| abstract_inverted_index.When | 14 |
| abstract_inverted_index.able | 52, 110 |
| abstract_inverted_index.also | 122, 137 |
| abstract_inverted_index.data | 2, 55, 166 |
| abstract_inverted_index.from | 17, 167 |
| abstract_inverted_index.help | 25 |
| abstract_inverted_index.here | 101 |
| abstract_inverted_index.lead | 123 |
| abstract_inverted_index.mice | 168 |
| abstract_inverted_index.only | 113 |
| abstract_inverted_index.play | 224 |
| abstract_inverted_index.role | 227 |
| abstract_inverted_index.than | 131, 193 |
| abstract_inverted_index.that | 218 |
| abstract_inverted_index.this | 89, 199 |
| abstract_inverted_index.time | 5, 154 |
| abstract_inverted_index.with | 56, 98 |
| abstract_inverted_index.These | 107 |
| abstract_inverted_index.brain | 206 |
| abstract_inverted_index.class | 116 |
| abstract_inverted_index.data, | 79 |
| abstract_inverted_index.data. | 13, 44 |
| abstract_inverted_index.early | 9, 20, 145 |
| abstract_inverted_index.found | 217 |
| abstract_inverted_index.input | 78 |
| abstract_inverted_index.large | 226 |
| abstract_inverted_index.motor | 174 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.onset | 33 |
| abstract_inverted_index.paper | 90, 142, 200 |
| abstract_inverted_index.time. | 65 |
| abstract_inverted_index.using | 155, 211 |
| abstract_inverted_index.while | 136 |
| abstract_inverted_index.Shifts | 0 |
| abstract_inverted_index.across | 4, 64, 153 |
| abstract_inverted_index.affect | 8 |
| abstract_inverted_index.before | 31, 188 |
| abstract_inverted_index.common | 40 |
| abstract_inverted_index.detect | 180 |
| abstract_inverted_index.enable | 67 |
| abstract_inverted_index.handle | 54 |
| abstract_inverted_index.memory | 84 |
| abstract_inverted_index.models | 41, 108 |
| abstract_inverted_index.neural | 18, 29, 37, 48, 77, 87, 96, 105, 134, 151, 158, 165, 178, 196 |
| abstract_inverted_index.robust | 62 |
| abstract_inverted_index.shifts | 59 |
| abstract_inverted_index.tasks. | 175 |
| abstract_inverted_index.termed | 102 |
| abstract_inverted_index.value, | 215 |
| abstract_inverted_index.SHapley | 212 |
| abstract_inverted_index.applied | 160 |
| abstract_inverted_index.earlier | 127, 192 |
| abstract_inverted_index.enhance | 82 |
| abstract_inverted_index.focuses | 143 |
| abstract_inverted_index.humans, | 170 |
| abstract_inverted_index.network | 69 |
| abstract_inverted_index.onset-3 | 190 |
| abstract_inverted_index.perform | 173 |
| abstract_inverted_index.predict | 114 |
| abstract_inverted_index.regions | 207, 223 |
| abstract_inverted_index.seconds | 187, 191 |
| abstract_inverted_index.utilize | 71 |
| abstract_inverted_index.variety | 163 |
| abstract_inverted_index.Additive | 213 |
| abstract_inverted_index.Finally, | 198 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.accurate | 125 |
| abstract_inverted_index.activity | 152 |
| abstract_inverted_index.behavior | 16, 23, 183, 189, 209 |
| abstract_inverted_index.decoding | 15 |
| abstract_inverted_index.devising | 27 |
| abstract_inverted_index.explored | 201 |
| abstract_inverted_index.features | 74 |
| abstract_inverted_index.gradient | 139 |
| abstract_inverted_index.networks | 38, 49, 97, 159, 179 |
| abstract_inverted_index.premotor | 222 |
| abstract_inverted_index.proposes | 91 |
| abstract_inverted_index.sequence | 43, 130 |
| abstract_inverted_index.standard | 46, 132, 194 |
| abstract_inverted_index.strongly | 7 |
| abstract_inverted_index.subjects | 172 |
| abstract_inverted_index.temporal | 57, 73 |
| abstract_inverted_index.weights, | 100 |
| abstract_inverted_index.Recurrent | 36 |
| abstract_inverted_index.activity, | 19 |
| abstract_inverted_index.approach: | 94 |
| abstract_inverted_index.behavior. | 35 |
| abstract_inverted_index.detection | 21 |
| abstract_inverted_index.different | 205 |
| abstract_inverted_index.dynamics. | 140 |
| abstract_inverted_index.guarantee | 61 |
| abstract_inverted_index.networks, | 88, 135 |
| abstract_inverted_index.networks. | 106, 197 |
| abstract_inverted_index.recurrent | 47, 86, 95, 104, 133, 157, 177, 195 |
| abstract_inverted_index.spatially | 149 |
| abstract_inverted_index.behavioral | 229 |
| abstract_inverted_index.corrective | 28 |
| abstract_inverted_index.correctly, | 120 |
| abstract_inverted_index.lever-pull | 182 |
| abstract_inverted_index.sequential | 146 |
| abstract_inverted_index.distributed | 150 |
| abstract_inverted_index.exPlanation | 214 |
| abstract_inverted_index.stabilizing | 138 |
| abstract_inverted_index.stimulation | 30 |
| abstract_inverted_index.time-series | 12 |
| abstract_inverted_index.Time-varying | 103, 156, 176 |
| abstract_inverted_index.contribution | 203 |
| abstract_inverted_index.distribution | 3 |
| abstract_inverted_index.time-varying | 99 |
| abstract_inverted_index.somatosensory | 220 |
| abstract_inverted_index.time-sequence | 119 |
| abstract_inverted_index.classification | 10, 63, 126, 147, 210 |
| abstract_inverted_index.distributional | 58 |
| abstract_inverted_index.self-initiated | 181 |
| abstract_inverted_index.classification. | 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.27054207 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |