Benchmarking Large Language Models in Evaluating Workforce Risk of Robotization: Insights from Agriculture Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/agriengineering7040102
Understanding the impact of robotization on the workforce dynamics has become increasingly urgent. While expert assessments provide valuable insights, they are often time-consuming and resource-intensive. Large language models (LLMs) offer a scalable alternative; however, their accuracy and reliability in evaluating workforce robotization potential remain uncertain. This study systematically compares general-purpose LLM-generated assessments with expert evaluations to assess their effectiveness in the agricultural sector by considering human judgments as the ground truth. Using ChatGPT, Copilot, and Gemini, the LLMs followed a three-step evaluation process focusing on (a) task importance, (b) potential for task robotization, and (c) task attribute indexing of 15 agricultural occupations, mirroring the methodology used by human assessors. The findings indicate a significant tendency for LLMs to overestimate robotization potential, with most of the errors falling within the range of 0.229 ± 0.174. This can be attributed primarily to LLM reliance on grey literature and idealized technological scenarios, as well as their limited capacity, to account for the complexities of agricultural work. Future research should focus on integrating expert knowledge into LLM training and improving bias detection and mitigation in agricultural datasets, as well as expanding the range of LLMs studied to enhance assessment reliability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriengineering7040102
- OA Status
- gold
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409140602
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409140602Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriengineering7040102Digital Object Identifier
- Title
-
Benchmarking Large Language Models in Evaluating Workforce Risk of Robotization: Insights from AgricultureWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-03Full publication date if available
- Authors
-
Lefteris Benos, Vasso Marinoudi, Patrizia Busato, Dimitrios Katerıs, Simon Pearson, Dionysis BochtisList of authors in order
- Landing page
-
https://doi.org/10.3390/agriengineering7040102Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/agriengineering7040102Direct OA link when available
- Concepts
-
Benchmarking, Workforce, Agriculture, Business, Workforce planning, Knowledge management, Computer science, Economics, Geography, Marketing, Economic growth, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409140602 |
|---|---|
| doi | https://doi.org/10.3390/agriengineering7040102 |
| ids.doi | https://doi.org/10.3390/agriengineering7040102 |
| ids.openalex | https://openalex.org/W4409140602 |
| fwci | 0.0 |
| type | article |
| title | Benchmarking Large Language Models in Evaluating Workforce Risk of Robotization: Insights from Agriculture |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 102 |
| biblio.first_page | 102 |
| topics[0].id | https://openalex.org/T12851 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9065999984741211 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Firm Innovation and Growth |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1299 |
| apc_paid.value | 1200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1299 |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8984693288803101 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C2778139618 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7786592245101929 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q13440398 |
| concepts[1].display_name | Workforce |
| concepts[2].id | https://openalex.org/C118518473 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5682525038719177 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[2].display_name | Agriculture |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4590403735637665 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C155663085 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4147002398967743 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1056396 |
| concepts[4].display_name | Workforce planning |
| concepts[5].id | https://openalex.org/C56739046 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34191054105758667 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[5].display_name | Knowledge management |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32281529903411865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.12468898296356201 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.11885887384414673 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C162853370 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11025944352149963 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[9].display_name | Marketing |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09125927090644836 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.8984693288803101 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/workforce |
| keywords[1].score | 0.7786592245101929 |
| keywords[1].display_name | Workforce |
| keywords[2].id | https://openalex.org/keywords/agriculture |
| keywords[2].score | 0.5682525038719177 |
| keywords[2].display_name | Agriculture |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.4590403735637665 |
| keywords[3].display_name | Business |
| keywords[4].id | https://openalex.org/keywords/workforce-planning |
| keywords[4].score | 0.4147002398967743 |
| keywords[4].display_name | Workforce planning |
| keywords[5].id | https://openalex.org/keywords/knowledge-management |
| keywords[5].score | 0.34191054105758667 |
| keywords[5].display_name | Knowledge management |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.32281529903411865 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/economics |
| keywords[7].score | 0.12468898296356201 |
| keywords[7].display_name | Economics |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.11885887384414673 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/marketing |
| keywords[9].score | 0.11025944352149963 |
| keywords[9].display_name | Marketing |
| keywords[10].id | https://openalex.org/keywords/economic-growth |
| keywords[10].score | 0.09125927090644836 |
| keywords[10].display_name | Economic growth |
| language | en |
| locations[0].id | doi:10.3390/agriengineering7040102 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177564 |
| locations[0].source.issn | 2624-7402 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-7402 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AgriEngineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AgriEngineering |
| locations[0].landing_page_url | https://doi.org/10.3390/agriengineering7040102 |
| locations[1].id | pmh:oai:doaj.org/article:5ecaee7389a54a87b5b13f677e3e7336 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AgriEngineering, Vol 7, Iss 4, p 102 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/5ecaee7389a54a87b5b13f677e3e7336 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5079201381 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2150-5166 |
| authorships[0].author.display_name | Lefteris Benos |
| authorships[0].countries | GR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210134249 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| authorships[0].institutions[0].id | https://openalex.org/I4210134249 |
| authorships[0].institutions[0].ror | https://ror.org/03bndpq63 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210134249 |
| authorships[0].institutions[0].country_code | GR |
| authorships[0].institutions[0].display_name | Centre for Research and Technology Hellas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lefteris Benos |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| authorships[1].author.id | https://openalex.org/A5077271514 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5080-9743 |
| authorships[1].author.display_name | Vasso Marinoudi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].raw_affiliation_string | FarmB Digital Agriculture S.A., 17th Noemvriou 79, 55534 Thessaloniki, Greece |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I51532219 |
| authorships[1].affiliations[1].raw_affiliation_string | Lincoln Institute for Agri-Food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK |
| authorships[1].institutions[0].id | https://openalex.org/I51532219 |
| authorships[1].institutions[0].ror | https://ror.org/03yeq9x20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51532219 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Lincoln |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vasso Marinoudi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | FarmB Digital Agriculture S.A., 17th Noemvriou 79, 55534 Thessaloniki, Greece, Lincoln Institute for Agri-Food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK |
| authorships[2].author.id | https://openalex.org/A5059581084 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9546-530X |
| authorships[2].author.display_name | Patrizia Busato |
| authorships[2].affiliations[0].raw_affiliation_string | Interuniversity Department of Regional and Urban Studies and Planning (DIST), Polytechnic of Turin, Viale Mattioli 39, 10125 Torino, Italy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patrizia Busato |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Interuniversity Department of Regional and Urban Studies and Planning (DIST), Polytechnic of Turin, Viale Mattioli 39, 10125 Torino, Italy |
| authorships[3].author.id | https://openalex.org/A5051577803 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5731-9472 |
| authorships[3].author.display_name | Dimitrios Katerıs |
| authorships[3].countries | GR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134249 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| authorships[3].institutions[0].id | https://openalex.org/I4210134249 |
| authorships[3].institutions[0].ror | https://ror.org/03bndpq63 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134249 |
| authorships[3].institutions[0].country_code | GR |
| authorships[3].institutions[0].display_name | Centre for Research and Technology Hellas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dimitrios Kateris |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| authorships[4].author.id | https://openalex.org/A5018447003 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4297-4837 |
| authorships[4].author.display_name | Simon Pearson |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I51532219 |
| authorships[4].affiliations[0].raw_affiliation_string | Lincoln Institute for Agri-Food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK |
| authorships[4].institutions[0].id | https://openalex.org/I51532219 |
| authorships[4].institutions[0].ror | https://ror.org/03yeq9x20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I51532219 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Lincoln |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Simon Pearson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Lincoln Institute for Agri-Food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK |
| authorships[5].author.id | https://openalex.org/A5073592501 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7058-5986 |
| authorships[5].author.display_name | Dionysis Bochtis |
| authorships[5].countries | GR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210134249 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| authorships[5].affiliations[1].raw_affiliation_string | FarmB Digital Agriculture S.A., 17th Noemvriou 79, 55534 Thessaloniki, Greece |
| authorships[5].institutions[0].id | https://openalex.org/I4210134249 |
| authorships[5].institutions[0].ror | https://ror.org/03bndpq63 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210134249 |
| authorships[5].institutions[0].country_code | GR |
| authorships[5].institutions[0].display_name | Centre for Research and Technology Hellas |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dionysis Bochtis |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | FarmB Digital Agriculture S.A., 17th Noemvriou 79, 55534 Thessaloniki, Greece, Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 57001 Thessaloniki, Greece |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/agriengineering7040102 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Benchmarking Large Language Models in Evaluating Workforce Risk of Robotization: Insights from Agriculture |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12851 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9065999984741211 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Firm Innovation and Growth |
| related_works | https://openalex.org/W2911202194, https://openalex.org/W2139492611, https://openalex.org/W2268028762, https://openalex.org/W2483177825, https://openalex.org/W1517725134, https://openalex.org/W2979198172, https://openalex.org/W4206262408, https://openalex.org/W2415770725, https://openalex.org/W836464292, https://openalex.org/W2406373194 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/agriengineering7040102 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177564 |
| best_oa_location.source.issn | 2624-7402 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-7402 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AgriEngineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AgriEngineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriengineering7040102 |
| primary_location.id | doi:10.3390/agriengineering7040102 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177564 |
| primary_location.source.issn | 2624-7402 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-7402 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AgriEngineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AgriEngineering |
| primary_location.landing_page_url | https://doi.org/10.3390/agriengineering7040102 |
| publication_date | 2025-04-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4392453291, https://openalex.org/W4398200901, https://openalex.org/W2949079091, https://openalex.org/W4403045969, https://openalex.org/W4406113248, https://openalex.org/W4392338537, https://openalex.org/W4362610119, https://openalex.org/W4401434014, https://openalex.org/W4377096394, https://openalex.org/W3140384782, https://openalex.org/W6748080884, https://openalex.org/W3157335627, https://openalex.org/W2908531905, https://openalex.org/W2954334197, https://openalex.org/W2987392587, https://openalex.org/W2809179779, https://openalex.org/W3045907619, https://openalex.org/W3208352308, https://openalex.org/W4324258218, https://openalex.org/W3022695253, https://openalex.org/W2526781987, https://openalex.org/W3173434788, https://openalex.org/W2568147334, https://openalex.org/W3122819077, https://openalex.org/W6743808651, https://openalex.org/W3124833732, https://openalex.org/W6758251208, https://openalex.org/W3042413463, https://openalex.org/W4401704028, https://openalex.org/W4404852187, https://openalex.org/W4391679299, https://openalex.org/W4391611012, https://openalex.org/W4386170955, https://openalex.org/W4399848789, https://openalex.org/W4375852308, https://openalex.org/W4230235470, https://openalex.org/W4391930351, https://openalex.org/W2910395230, https://openalex.org/W3136130522, https://openalex.org/W3155140745, https://openalex.org/W4402567763, https://openalex.org/W4406205485, https://openalex.org/W2947727834, https://openalex.org/W4214831823, https://openalex.org/W3088348166, https://openalex.org/W4407264005, https://openalex.org/W4362716218, https://openalex.org/W4285009948, https://openalex.org/W4391560419, https://openalex.org/W2146006411, https://openalex.org/W4406211644, https://openalex.org/W4386142022, https://openalex.org/W4406328129, https://openalex.org/W2988298915, https://openalex.org/W2751744943 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 30, 79, 112 |
| abstract_inverted_index.15 | 99 |
| abstract_inverted_index.as | 67, 149, 151, 183, 185 |
| abstract_inverted_index.be | 136 |
| abstract_inverted_index.by | 63, 106 |
| abstract_inverted_index.in | 38, 59, 180 |
| abstract_inverted_index.of | 3, 98, 123, 130, 160, 189 |
| abstract_inverted_index.on | 5, 84, 142, 167 |
| abstract_inverted_index.to | 55, 117, 139, 155, 192 |
| abstract_inverted_index.± | 132 |
| abstract_inverted_index.(a) | 85 |
| abstract_inverted_index.(b) | 88 |
| abstract_inverted_index.(c) | 94 |
| abstract_inverted_index.LLM | 140, 172 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 23, 36, 74, 93, 145, 174, 178 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.for | 90, 115, 157 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.the | 1, 6, 60, 68, 76, 103, 124, 128, 158, 187 |
| abstract_inverted_index.LLMs | 77, 116, 190 |
| abstract_inverted_index.This | 45, 134 |
| abstract_inverted_index.bias | 176 |
| abstract_inverted_index.grey | 143 |
| abstract_inverted_index.into | 171 |
| abstract_inverted_index.most | 122 |
| abstract_inverted_index.task | 86, 91, 95 |
| abstract_inverted_index.they | 19 |
| abstract_inverted_index.used | 105 |
| abstract_inverted_index.well | 150, 184 |
| abstract_inverted_index.with | 52, 121 |
| abstract_inverted_index.0.229 | 131 |
| abstract_inverted_index.Large | 25 |
| abstract_inverted_index.Using | 71 |
| abstract_inverted_index.While | 13 |
| abstract_inverted_index.focus | 166 |
| abstract_inverted_index.human | 65, 107 |
| abstract_inverted_index.offer | 29 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.range | 129, 188 |
| abstract_inverted_index.study | 46 |
| abstract_inverted_index.their | 34, 57, 152 |
| abstract_inverted_index.work. | 162 |
| abstract_inverted_index.(LLMs) | 28 |
| abstract_inverted_index.0.174. | 133 |
| abstract_inverted_index.Future | 163 |
| abstract_inverted_index.assess | 56 |
| abstract_inverted_index.become | 10 |
| abstract_inverted_index.errors | 125 |
| abstract_inverted_index.expert | 14, 53, 169 |
| abstract_inverted_index.ground | 69 |
| abstract_inverted_index.impact | 2 |
| abstract_inverted_index.models | 27 |
| abstract_inverted_index.remain | 43 |
| abstract_inverted_index.sector | 62 |
| abstract_inverted_index.should | 165 |
| abstract_inverted_index.truth. | 70 |
| abstract_inverted_index.within | 127 |
| abstract_inverted_index.Gemini, | 75 |
| abstract_inverted_index.account | 156 |
| abstract_inverted_index.enhance | 193 |
| abstract_inverted_index.falling | 126 |
| abstract_inverted_index.limited | 153 |
| abstract_inverted_index.process | 82 |
| abstract_inverted_index.provide | 16 |
| abstract_inverted_index.studied | 191 |
| abstract_inverted_index.urgent. | 12 |
| abstract_inverted_index.ChatGPT, | 72 |
| abstract_inverted_index.Copilot, | 73 |
| abstract_inverted_index.accuracy | 35 |
| abstract_inverted_index.compares | 48 |
| abstract_inverted_index.dynamics | 8 |
| abstract_inverted_index.findings | 110 |
| abstract_inverted_index.focusing | 83 |
| abstract_inverted_index.followed | 78 |
| abstract_inverted_index.however, | 33 |
| abstract_inverted_index.indexing | 97 |
| abstract_inverted_index.indicate | 111 |
| abstract_inverted_index.language | 26 |
| abstract_inverted_index.reliance | 141 |
| abstract_inverted_index.research | 164 |
| abstract_inverted_index.scalable | 31 |
| abstract_inverted_index.tendency | 114 |
| abstract_inverted_index.training | 173 |
| abstract_inverted_index.valuable | 17 |
| abstract_inverted_index.attribute | 96 |
| abstract_inverted_index.capacity, | 154 |
| abstract_inverted_index.datasets, | 182 |
| abstract_inverted_index.detection | 177 |
| abstract_inverted_index.expanding | 186 |
| abstract_inverted_index.idealized | 146 |
| abstract_inverted_index.improving | 175 |
| abstract_inverted_index.insights, | 18 |
| abstract_inverted_index.judgments | 66 |
| abstract_inverted_index.knowledge | 170 |
| abstract_inverted_index.mirroring | 102 |
| abstract_inverted_index.potential | 42, 89 |
| abstract_inverted_index.primarily | 138 |
| abstract_inverted_index.workforce | 7, 40 |
| abstract_inverted_index.assessment | 194 |
| abstract_inverted_index.assessors. | 108 |
| abstract_inverted_index.attributed | 137 |
| abstract_inverted_index.evaluating | 39 |
| abstract_inverted_index.evaluation | 81 |
| abstract_inverted_index.literature | 144 |
| abstract_inverted_index.mitigation | 179 |
| abstract_inverted_index.potential, | 120 |
| abstract_inverted_index.scenarios, | 148 |
| abstract_inverted_index.three-step | 80 |
| abstract_inverted_index.uncertain. | 44 |
| abstract_inverted_index.assessments | 15, 51 |
| abstract_inverted_index.considering | 64 |
| abstract_inverted_index.evaluations | 54 |
| abstract_inverted_index.importance, | 87 |
| abstract_inverted_index.integrating | 168 |
| abstract_inverted_index.methodology | 104 |
| abstract_inverted_index.reliability | 37 |
| abstract_inverted_index.significant | 113 |
| abstract_inverted_index.agricultural | 61, 100, 161, 181 |
| abstract_inverted_index.alternative; | 32 |
| abstract_inverted_index.complexities | 159 |
| abstract_inverted_index.increasingly | 11 |
| abstract_inverted_index.occupations, | 101 |
| abstract_inverted_index.overestimate | 118 |
| abstract_inverted_index.reliability. | 195 |
| abstract_inverted_index.robotization | 4, 41, 119 |
| abstract_inverted_index.LLM-generated | 50 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.effectiveness | 58 |
| abstract_inverted_index.robotization, | 92 |
| abstract_inverted_index.technological | 147 |
| abstract_inverted_index.systematically | 47 |
| abstract_inverted_index.time-consuming | 22 |
| abstract_inverted_index.general-purpose | 49 |
| abstract_inverted_index.resource-intensive. | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.10986827 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |