Benchmarking Regression Methods: A comparison with CGAN Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1905.12868
In recent years, impressive progress has been made in the design of implicit probabilistic models via Generative Adversarial Networks (GAN) and its extension, the Conditional GAN (CGAN). Excellent solutions have been demonstrated mostly in image processing applications which involve large, continuous output spaces. There is almost no application of these powerful tools to problems having small dimensional output spaces. Regression problems involving the inductive learning of a map, $y=f(x,z)$, $z$ denoting noise, $f:\mathbb{R}^n\times \mathbb{R}^k \rightarrow \mathbb{R}^m$, with $m$ small (e.g., $m=1$ or just a few) is one good case in point. The standard approach to solve regression problems is to probabilistically model the output $y$ as the sum of a mean function $m(x)$ and a noise term $z$; it is also usual to take the noise to be a Gaussian. These are done for convenience sake so that the likelihood of observed data is expressible in closed form. In the real world, on the other hand, stochasticity of the output is usually caused by missing or noisy input variables. Such a real world situation is best represented using an implicit model in which an extra noise vector, $z$ is included with $x$ as input. CGAN is naturally suited to design such implicit models. This paper makes the first step in this direction and compares the existing regression methods with CGAN. We notice however, that the existing methods like mixture density networks (MDN) and XGBoost do quite well compared to CGAN in terms of likelihood and mean absolute error, respectively. Both these methods are comparatively easier to train than CGANs. CGANs need more innovation to have a comparable modeling and ease-of-training with respect to the existing regression solvers. In summary, for modeling uncertainty MDNs are better while XGBoost is better for the cases where accurate prediction is more important.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1905.12868
- https://arxiv.org/pdf/1905.12868
- OA Status
- green
- Cited By
- 18
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2998663318
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2998663318Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1905.12868Digital Object Identifier
- Title
-
Benchmarking Regression Methods: A comparison with CGANWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-30Full publication date if available
- Authors
-
Karan Aggarwal, Matthieu Kirchmeyer, Pranjul Yadav, S. Sathiya Keerthi, Patrick GallinariList of authors in order
- Landing page
-
https://arxiv.org/abs/1905.12868Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1905.12868Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1905.12868Direct OA link when available
- Concepts
-
Benchmarking, Regression, Computer science, Statistics, Artificial intelligence, Mathematics, Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 4, 2021: 6, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2998663318 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1905.12868 |
| ids.doi | https://doi.org/10.48550/arxiv.1905.12868 |
| ids.mag | 2998663318 |
| ids.openalex | https://openalex.org/W2998663318 |
| fwci | |
| type | preprint |
| title | Benchmarking Regression Methods: A comparison with CGAN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984499990940094 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8454278111457825 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5018291473388672 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39313676953315735 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.38261374831199646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33608245849609375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.20163002610206604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12716934084892273 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C162853370 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[7].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.8454278111457825 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5018291473388672 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.39313676953315735 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.38261374831199646 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.33608245849609375 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.20163002610206604 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.12716934084892273 |
| keywords[6].display_name | Business |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1905.12868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1905.12868 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1905.12868 |
| locations[1].id | doi:10.48550/arxiv.1905.12868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1905.12868 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052681145 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9038-0099 |
| authorships[0].author.display_name | Karan Aggarwal |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210161401 |
| authorships[0].affiliations[0].raw_affiliation_string | Criteo [Paris] |
| authorships[0].institutions[0].id | https://openalex.org/I4210161401 |
| authorships[0].institutions[0].ror | https://ror.org/04vyg0r47 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210161401 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Criteo (France) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karan Aggarwal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Criteo [Paris] |
| authorships[1].author.id | https://openalex.org/A5088630661 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3750-4141 |
| authorships[1].author.display_name | Matthieu Kirchmeyer |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210161401 |
| authorships[1].affiliations[0].raw_affiliation_string | Criteo [Paris] |
| authorships[1].institutions[0].id | https://openalex.org/I4210161401 |
| authorships[1].institutions[0].ror | https://ror.org/04vyg0r47 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210161401 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Criteo (France) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthieu Kirchmeyer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Criteo [Paris] |
| authorships[2].author.id | https://openalex.org/A5003976436 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7860-5830 |
| authorships[2].author.display_name | Pranjul Yadav |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210161401 |
| authorships[2].affiliations[0].raw_affiliation_string | Criteo [Paris] |
| authorships[2].institutions[0].id | https://openalex.org/I4210161401 |
| authorships[2].institutions[0].ror | https://ror.org/04vyg0r47 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210161401 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Criteo (France) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pranjul Yadav |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Criteo [Paris] |
| authorships[3].author.id | https://openalex.org/A5106708987 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | S. Sathiya Keerthi |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210161401 |
| authorships[3].affiliations[0].raw_affiliation_string | Criteo [Paris] |
| authorships[3].institutions[0].id | https://openalex.org/I4210161401 |
| authorships[3].institutions[0].ror | https://ror.org/04vyg0r47 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210161401 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Criteo (France) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | S. Sathiya Keerthi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Criteo [Paris] |
| authorships[4].author.id | https://openalex.org/A5103252936 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9060-9001 |
| authorships[4].author.display_name | Patrick Gallinari |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210161401 |
| authorships[4].affiliations[0].raw_affiliation_string | Criteo [Paris] |
| authorships[4].institutions[0].id | https://openalex.org/I4210161401 |
| authorships[4].institutions[0].ror | https://ror.org/04vyg0r47 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210161401 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Criteo (France) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Patrick Gallinari |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Criteo [Paris] |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1905.12868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Benchmarking Regression Methods: A comparison with CGAN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1905.12868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1905.12868 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1905.12868 |
| primary_location.id | pmh:oai:arXiv.org:1905.12868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1905.12868 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1905.12868 |
| publication_date | 2019-05-30 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2099471712, https://openalex.org/W1579853615, https://openalex.org/W2066674838, https://openalex.org/W2331199375, https://openalex.org/W2962892300, https://openalex.org/W2161767008, https://openalex.org/W2176412452, https://openalex.org/W1663973292, https://openalex.org/W2963800509, https://openalex.org/W2963678809, https://openalex.org/W2145702696, https://openalex.org/W2134477639, https://openalex.org/W2587706859, https://openalex.org/W2055825262, https://openalex.org/W1496559305, https://openalex.org/W2125389028 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 66, 83, 109, 114, 128, 170, 265 |
| abstract_inverted_index.In | 0, 148, 277 |
| abstract_inverted_index.We | 220 |
| abstract_inverted_index.an | 178, 183 |
| abstract_inverted_index.as | 105, 192 |
| abstract_inverted_index.be | 127 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.do | 234 |
| abstract_inverted_index.in | 8, 33, 89, 145, 181, 209, 240 |
| abstract_inverted_index.is | 44, 85, 98, 119, 143, 160, 174, 188, 195, 287, 295 |
| abstract_inverted_index.it | 118 |
| abstract_inverted_index.no | 46 |
| abstract_inverted_index.of | 11, 48, 65, 108, 140, 157, 242 |
| abstract_inverted_index.on | 152 |
| abstract_inverted_index.or | 81, 165 |
| abstract_inverted_index.so | 136 |
| abstract_inverted_index.to | 52, 94, 99, 122, 126, 198, 238, 255, 263, 272 |
| abstract_inverted_index.$m$ | 77 |
| abstract_inverted_index.$x$ | 191 |
| abstract_inverted_index.$y$ | 104 |
| abstract_inverted_index.$z$ | 69, 187 |
| abstract_inverted_index.GAN | 25 |
| abstract_inverted_index.The | 91 |
| abstract_inverted_index.and | 20, 113, 212, 232, 244, 268 |
| abstract_inverted_index.are | 131, 252, 283 |
| abstract_inverted_index.for | 133, 279, 289 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.its | 21 |
| abstract_inverted_index.one | 86 |
| abstract_inverted_index.sum | 107 |
| abstract_inverted_index.the | 9, 23, 62, 102, 106, 124, 138, 149, 153, 158, 206, 214, 224, 273, 290 |
| abstract_inverted_index.via | 15 |
| abstract_inverted_index.$z$; | 117 |
| abstract_inverted_index.Both | 249 |
| abstract_inverted_index.CGAN | 194, 239 |
| abstract_inverted_index.MDNs | 282 |
| abstract_inverted_index.Such | 169 |
| abstract_inverted_index.This | 203 |
| abstract_inverted_index.also | 120 |
| abstract_inverted_index.been | 6, 30 |
| abstract_inverted_index.best | 175 |
| abstract_inverted_index.case | 88 |
| abstract_inverted_index.data | 142 |
| abstract_inverted_index.done | 132 |
| abstract_inverted_index.few) | 84 |
| abstract_inverted_index.good | 87 |
| abstract_inverted_index.have | 29, 264 |
| abstract_inverted_index.just | 82 |
| abstract_inverted_index.like | 227 |
| abstract_inverted_index.made | 7 |
| abstract_inverted_index.map, | 67 |
| abstract_inverted_index.mean | 110, 245 |
| abstract_inverted_index.more | 261, 296 |
| abstract_inverted_index.need | 260 |
| abstract_inverted_index.real | 150, 171 |
| abstract_inverted_index.sake | 135 |
| abstract_inverted_index.step | 208 |
| abstract_inverted_index.such | 200 |
| abstract_inverted_index.take | 123 |
| abstract_inverted_index.term | 116 |
| abstract_inverted_index.than | 257 |
| abstract_inverted_index.that | 137, 223 |
| abstract_inverted_index.this | 210 |
| abstract_inverted_index.well | 236 |
| abstract_inverted_index.with | 76, 190, 218, 270 |
| abstract_inverted_index.$m=1$ | 80 |
| abstract_inverted_index.(GAN) | 19 |
| abstract_inverted_index.(MDN) | 231 |
| abstract_inverted_index.CGAN. | 219 |
| abstract_inverted_index.CGANs | 259 |
| abstract_inverted_index.There | 43 |
| abstract_inverted_index.These | 130 |
| abstract_inverted_index.cases | 291 |
| abstract_inverted_index.extra | 184 |
| abstract_inverted_index.first | 207 |
| abstract_inverted_index.form. | 147 |
| abstract_inverted_index.hand, | 155 |
| abstract_inverted_index.image | 34 |
| abstract_inverted_index.input | 167 |
| abstract_inverted_index.makes | 205 |
| abstract_inverted_index.model | 101, 180 |
| abstract_inverted_index.noise | 115, 125, 185 |
| abstract_inverted_index.noisy | 166 |
| abstract_inverted_index.other | 154 |
| abstract_inverted_index.paper | 204 |
| abstract_inverted_index.quite | 235 |
| abstract_inverted_index.small | 55, 78 |
| abstract_inverted_index.solve | 95 |
| abstract_inverted_index.terms | 241 |
| abstract_inverted_index.these | 49, 250 |
| abstract_inverted_index.tools | 51 |
| abstract_inverted_index.train | 256 |
| abstract_inverted_index.using | 177 |
| abstract_inverted_index.usual | 121 |
| abstract_inverted_index.where | 292 |
| abstract_inverted_index.which | 37, 182 |
| abstract_inverted_index.while | 285 |
| abstract_inverted_index.world | 172 |
| abstract_inverted_index.$m(x)$ | 112 |
| abstract_inverted_index.(e.g., | 79 |
| abstract_inverted_index.CGANs. | 258 |
| abstract_inverted_index.almost | 45 |
| abstract_inverted_index.better | 284, 288 |
| abstract_inverted_index.caused | 162 |
| abstract_inverted_index.closed | 146 |
| abstract_inverted_index.design | 10, 199 |
| abstract_inverted_index.easier | 254 |
| abstract_inverted_index.error, | 247 |
| abstract_inverted_index.having | 54 |
| abstract_inverted_index.input. | 193 |
| abstract_inverted_index.large, | 39 |
| abstract_inverted_index.models | 14 |
| abstract_inverted_index.mostly | 32 |
| abstract_inverted_index.noise, | 71 |
| abstract_inverted_index.notice | 221 |
| abstract_inverted_index.output | 41, 57, 103, 159 |
| abstract_inverted_index.point. | 90 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.suited | 197 |
| abstract_inverted_index.world, | 151 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.(CGAN). | 26 |
| abstract_inverted_index.XGBoost | 233, 286 |
| abstract_inverted_index.density | 229 |
| abstract_inverted_index.involve | 38 |
| abstract_inverted_index.methods | 217, 226, 251 |
| abstract_inverted_index.missing | 164 |
| abstract_inverted_index.mixture | 228 |
| abstract_inverted_index.models. | 202 |
| abstract_inverted_index.respect | 271 |
| abstract_inverted_index.spaces. | 42, 58 |
| abstract_inverted_index.usually | 161 |
| abstract_inverted_index.vector, | 186 |
| abstract_inverted_index.Networks | 18 |
| abstract_inverted_index.absolute | 246 |
| abstract_inverted_index.accurate | 293 |
| abstract_inverted_index.approach | 93 |
| abstract_inverted_index.compared | 237 |
| abstract_inverted_index.compares | 213 |
| abstract_inverted_index.denoting | 70 |
| abstract_inverted_index.existing | 215, 225, 274 |
| abstract_inverted_index.function | 111 |
| abstract_inverted_index.however, | 222 |
| abstract_inverted_index.implicit | 12, 179, 201 |
| abstract_inverted_index.included | 189 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.modeling | 267, 280 |
| abstract_inverted_index.networks | 230 |
| abstract_inverted_index.observed | 141 |
| abstract_inverted_index.powerful | 50 |
| abstract_inverted_index.problems | 53, 60, 97 |
| abstract_inverted_index.progress | 4 |
| abstract_inverted_index.solvers. | 276 |
| abstract_inverted_index.standard | 92 |
| abstract_inverted_index.summary, | 278 |
| abstract_inverted_index.Excellent | 27 |
| abstract_inverted_index.Gaussian. | 129 |
| abstract_inverted_index.direction | 211 |
| abstract_inverted_index.inductive | 63 |
| abstract_inverted_index.involving | 61 |
| abstract_inverted_index.naturally | 196 |
| abstract_inverted_index.situation | 173 |
| abstract_inverted_index.solutions | 28 |
| abstract_inverted_index.Generative | 16 |
| abstract_inverted_index.Regression | 59 |
| abstract_inverted_index.comparable | 266 |
| abstract_inverted_index.continuous | 40 |
| abstract_inverted_index.extension, | 22 |
| abstract_inverted_index.important. | 297 |
| abstract_inverted_index.impressive | 3 |
| abstract_inverted_index.innovation | 262 |
| abstract_inverted_index.likelihood | 139, 243 |
| abstract_inverted_index.prediction | 294 |
| abstract_inverted_index.processing | 35 |
| abstract_inverted_index.regression | 96, 216, 275 |
| abstract_inverted_index.variables. | 168 |
| abstract_inverted_index.$y=f(x,z)$, | 68 |
| abstract_inverted_index.Adversarial | 17 |
| abstract_inverted_index.Conditional | 24 |
| abstract_inverted_index.\rightarrow | 74 |
| abstract_inverted_index.application | 47 |
| abstract_inverted_index.convenience | 134 |
| abstract_inverted_index.dimensional | 56 |
| abstract_inverted_index.expressible | 144 |
| abstract_inverted_index.represented | 176 |
| abstract_inverted_index.uncertainty | 281 |
| abstract_inverted_index.\mathbb{R}^k | 73 |
| abstract_inverted_index.applications | 36 |
| abstract_inverted_index.demonstrated | 31 |
| abstract_inverted_index.comparatively | 253 |
| abstract_inverted_index.probabilistic | 13 |
| abstract_inverted_index.respectively. | 248 |
| abstract_inverted_index.stochasticity | 156 |
| abstract_inverted_index.\mathbb{R}^m$, | 75 |
| abstract_inverted_index.ease-of-training | 269 |
| abstract_inverted_index.probabilistically | 100 |
| abstract_inverted_index.$f:\mathbb{R}^n\times | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |