Benchmarking Resource Usage for Efficient Distributed Deep Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.12423
Deep learning (DL) workflows demand an ever-increasing budget of compute and energy in order to achieve outsized gains. Neural architecture searches, hyperparameter sweeps, and rapid prototyping consume immense resources that can prevent resource-constrained researchers from experimenting with large models and carry considerable environmental impact. As such, it becomes essential to understand how different deep neural networks (DNNs) and training leverage increasing compute and energy resources -- especially specialized computationally-intensive models across different domains and applications. In this paper, we conduct over 3,400 experiments training an array of deep networks representing various domains/tasks -- natural language processing, computer vision, and chemistry -- on up to 424 graphics processing units (GPUs). During training, our experiments systematically vary compute resource characteristics and energy-saving mechanisms such as power utilization and GPU clock rate limits to capture and illustrate the different trade-offs and scaling behaviors each representative model exhibits under various resource and energy-constrained regimes. We fit power law models that describe how training time scales with available compute resources and energy constraints. We anticipate that these findings will help inform and guide high-performance computing providers in optimizing resource utilization, by selectively reducing energy consumption for different deep learning tasks/workflows with minimal impact on training.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.12423
- https://arxiv.org/pdf/2201.12423
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226424739
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226424739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.12423Digital Object Identifier
- Title
-
Benchmarking Resource Usage for Efficient Distributed Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-28Full publication date if available
- Authors
-
Nathan C. Frey, Baolin Li, J.C. McDonald, Dan Zhao, Michael Jones, David Bestor, Devesh Tiwari, Vijay Gadepally, Siddharth SamsiList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.12423Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.12423Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.12423Direct OA link when available
- Concepts
-
Computer science, Workflow, Deep learning, Leverage (statistics), Benchmarking, Artificial intelligence, Resource (disambiguation), Artificial neural network, Machine learning, Deep neural networks, Scheduling (production processes), Energy consumption, Distributed computing, Resource allocation, Database, Ecology, Biology, Marketing, Operations management, Business, Economics, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226424739 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.12423 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.12423 |
| ids.openalex | https://openalex.org/W4226424739 |
| fwci | |
| type | preprint |
| title | Benchmarking Resource Usage for Efficient Distributed Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9779999852180481 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7670258283615112 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C177212765 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6974077224731445 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[1].display_name | Workflow |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.691006600856781 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C153083717 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6415554881095886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[3].display_name | Leverage (statistics) |
| concepts[4].id | https://openalex.org/C86251818 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6134776473045349 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[4].display_name | Benchmarking |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5090107917785645 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C206345919 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5073599219322205 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[6].display_name | Resource (disambiguation) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47620972990989685 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4381188154220581 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C2984842247 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4377082586288452 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep neural networks |
| concepts[10].id | https://openalex.org/C206729178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4239645302295685 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[10].display_name | Scheduling (production processes) |
| concepts[11].id | https://openalex.org/C2780165032 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4189130365848541 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q16869822 |
| concepts[11].display_name | Energy consumption |
| concepts[12].id | https://openalex.org/C120314980 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4172515273094177 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[12].display_name | Distributed computing |
| concepts[13].id | https://openalex.org/C29202148 |
| concepts[13].level | 2 |
| concepts[13].score | 0.415641725063324 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q287260 |
| concepts[13].display_name | Resource allocation |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.14525631070137024 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C162853370 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[17].display_name | Marketing |
| concepts[18].id | https://openalex.org/C21547014 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[18].display_name | Operations management |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C31258907 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[21].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7670258283615112 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/workflow |
| keywords[1].score | 0.6974077224731445 |
| keywords[1].display_name | Workflow |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.691006600856781 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/leverage |
| keywords[3].score | 0.6415554881095886 |
| keywords[3].display_name | Leverage (statistics) |
| keywords[4].id | https://openalex.org/keywords/benchmarking |
| keywords[4].score | 0.6134776473045349 |
| keywords[4].display_name | Benchmarking |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5090107917785645 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/resource |
| keywords[6].score | 0.5073599219322205 |
| keywords[6].display_name | Resource (disambiguation) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.47620972990989685 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4381188154220581 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[9].score | 0.4377082586288452 |
| keywords[9].display_name | Deep neural networks |
| keywords[10].id | https://openalex.org/keywords/scheduling |
| keywords[10].score | 0.4239645302295685 |
| keywords[10].display_name | Scheduling (production processes) |
| keywords[11].id | https://openalex.org/keywords/energy-consumption |
| keywords[11].score | 0.4189130365848541 |
| keywords[11].display_name | Energy consumption |
| keywords[12].id | https://openalex.org/keywords/distributed-computing |
| keywords[12].score | 0.4172515273094177 |
| keywords[12].display_name | Distributed computing |
| keywords[13].id | https://openalex.org/keywords/resource-allocation |
| keywords[13].score | 0.415641725063324 |
| keywords[13].display_name | Resource allocation |
| keywords[14].id | https://openalex.org/keywords/database |
| keywords[14].score | 0.14525631070137024 |
| keywords[14].display_name | Database |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.12423 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.12423 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.12423 |
| locations[1].id | doi:10.48550/arxiv.2201.12423 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.12423 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090160831 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5291-6131 |
| authorships[0].author.display_name | Nathan C. Frey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frey, Nathan C. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100733204 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9778-1023 |
| authorships[1].author.display_name | Baolin Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Baolin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102803650 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-7517-6244 |
| authorships[2].author.display_name | J.C. McDonald |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | McDonald, Joseph |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100624303 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4484-6505 |
| authorships[3].author.display_name | Dan Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao, Dan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071291501 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0565-4938 |
| authorships[4].author.display_name | Michael Jones |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jones, Michael |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5072368385 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-7684-1191 |
| authorships[5].author.display_name | David Bestor |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Bestor, David |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5074406596 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7253-2458 |
| authorships[6].author.display_name | Devesh Tiwari |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tiwari, Devesh |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5043450560 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4598-2808 |
| authorships[7].author.display_name | Vijay Gadepally |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gadepally, Vijay |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5103227438 |
| authorships[8].author.orcid | https://orcid.org/0009-0000-2884-9688 |
| authorships[8].author.display_name | Siddharth Samsi |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Samsi, Siddharth |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.12423 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Benchmarking Resource Usage for Efficient Distributed Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2000169967, https://openalex.org/W2112883198 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.12423 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.12423 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.12423 |
| primary_location.id | pmh:oai:arXiv.org:2201.12423 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.12423 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.12423 |
| publication_date | 2022-01-28 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.-- | 65, 92, 100 |
| abstract_inverted_index.As | 44 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.We | 150, 168 |
| abstract_inverted_index.an | 5, 84 |
| abstract_inverted_index.as | 122 |
| abstract_inverted_index.by | 185 |
| abstract_inverted_index.in | 12, 181 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 8, 86 |
| abstract_inverted_index.on | 101, 198 |
| abstract_inverted_index.to | 14, 49, 103, 130 |
| abstract_inverted_index.up | 102 |
| abstract_inverted_index.we | 78 |
| abstract_inverted_index.424 | 104 |
| abstract_inverted_index.GPU | 126 |
| abstract_inverted_index.and | 10, 23, 39, 57, 62, 73, 98, 118, 125, 132, 137, 147, 165, 176 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.fit | 151 |
| abstract_inverted_index.for | 190 |
| abstract_inverted_index.how | 51, 157 |
| abstract_inverted_index.law | 153 |
| abstract_inverted_index.our | 111 |
| abstract_inverted_index.the | 134 |
| abstract_inverted_index.(DL) | 2 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.deep | 53, 87, 192 |
| abstract_inverted_index.each | 140 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.help | 174 |
| abstract_inverted_index.over | 80 |
| abstract_inverted_index.rate | 128 |
| abstract_inverted_index.such | 121 |
| abstract_inverted_index.that | 29, 155, 170 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.time | 159 |
| abstract_inverted_index.vary | 114 |
| abstract_inverted_index.will | 173 |
| abstract_inverted_index.with | 36, 161, 195 |
| abstract_inverted_index.3,400 | 81 |
| abstract_inverted_index.array | 85 |
| abstract_inverted_index.carry | 40 |
| abstract_inverted_index.clock | 127 |
| abstract_inverted_index.guide | 177 |
| abstract_inverted_index.large | 37 |
| abstract_inverted_index.model | 142 |
| abstract_inverted_index.order | 13 |
| abstract_inverted_index.power | 123, 152 |
| abstract_inverted_index.rapid | 24 |
| abstract_inverted_index.such, | 45 |
| abstract_inverted_index.these | 171 |
| abstract_inverted_index.under | 144 |
| abstract_inverted_index.units | 107 |
| abstract_inverted_index.(DNNs) | 56 |
| abstract_inverted_index.During | 109 |
| abstract_inverted_index.Neural | 18 |
| abstract_inverted_index.across | 70 |
| abstract_inverted_index.budget | 7 |
| abstract_inverted_index.demand | 4 |
| abstract_inverted_index.energy | 11, 63, 166, 188 |
| abstract_inverted_index.gains. | 17 |
| abstract_inverted_index.impact | 197 |
| abstract_inverted_index.inform | 175 |
| abstract_inverted_index.limits | 129 |
| abstract_inverted_index.models | 38, 69, 154 |
| abstract_inverted_index.neural | 54 |
| abstract_inverted_index.paper, | 77 |
| abstract_inverted_index.scales | 160 |
| abstract_inverted_index.(GPUs). | 108 |
| abstract_inverted_index.achieve | 15 |
| abstract_inverted_index.becomes | 47 |
| abstract_inverted_index.capture | 131 |
| abstract_inverted_index.compute | 9, 61, 115, 163 |
| abstract_inverted_index.conduct | 79 |
| abstract_inverted_index.consume | 26 |
| abstract_inverted_index.domains | 72 |
| abstract_inverted_index.immense | 27 |
| abstract_inverted_index.impact. | 43 |
| abstract_inverted_index.minimal | 196 |
| abstract_inverted_index.natural | 93 |
| abstract_inverted_index.prevent | 31 |
| abstract_inverted_index.scaling | 138 |
| abstract_inverted_index.sweeps, | 22 |
| abstract_inverted_index.various | 90, 145 |
| abstract_inverted_index.vision, | 97 |
| abstract_inverted_index.computer | 96 |
| abstract_inverted_index.describe | 156 |
| abstract_inverted_index.exhibits | 143 |
| abstract_inverted_index.findings | 172 |
| abstract_inverted_index.graphics | 105 |
| abstract_inverted_index.language | 94 |
| abstract_inverted_index.learning | 1, 193 |
| abstract_inverted_index.leverage | 59 |
| abstract_inverted_index.networks | 55, 88 |
| abstract_inverted_index.outsized | 16 |
| abstract_inverted_index.reducing | 187 |
| abstract_inverted_index.regimes. | 149 |
| abstract_inverted_index.resource | 116, 146, 183 |
| abstract_inverted_index.training | 58, 83, 158 |
| abstract_inverted_index.available | 162 |
| abstract_inverted_index.behaviors | 139 |
| abstract_inverted_index.chemistry | 99 |
| abstract_inverted_index.computing | 179 |
| abstract_inverted_index.different | 52, 71, 135, 191 |
| abstract_inverted_index.essential | 48 |
| abstract_inverted_index.providers | 180 |
| abstract_inverted_index.resources | 28, 64, 164 |
| abstract_inverted_index.searches, | 20 |
| abstract_inverted_index.training, | 110 |
| abstract_inverted_index.training. | 199 |
| abstract_inverted_index.workflows | 3 |
| abstract_inverted_index.anticipate | 169 |
| abstract_inverted_index.especially | 66 |
| abstract_inverted_index.illustrate | 133 |
| abstract_inverted_index.increasing | 60 |
| abstract_inverted_index.mechanisms | 120 |
| abstract_inverted_index.optimizing | 182 |
| abstract_inverted_index.processing | 106 |
| abstract_inverted_index.trade-offs | 136 |
| abstract_inverted_index.understand | 50 |
| abstract_inverted_index.consumption | 189 |
| abstract_inverted_index.experiments | 82, 112 |
| abstract_inverted_index.processing, | 95 |
| abstract_inverted_index.prototyping | 25 |
| abstract_inverted_index.researchers | 33 |
| abstract_inverted_index.selectively | 186 |
| abstract_inverted_index.specialized | 67 |
| abstract_inverted_index.utilization | 124 |
| abstract_inverted_index.architecture | 19 |
| abstract_inverted_index.considerable | 41 |
| abstract_inverted_index.constraints. | 167 |
| abstract_inverted_index.representing | 89 |
| abstract_inverted_index.utilization, | 184 |
| abstract_inverted_index.applications. | 74 |
| abstract_inverted_index.domains/tasks | 91 |
| abstract_inverted_index.energy-saving | 119 |
| abstract_inverted_index.environmental | 42 |
| abstract_inverted_index.experimenting | 35 |
| abstract_inverted_index.hyperparameter | 21 |
| abstract_inverted_index.representative | 141 |
| abstract_inverted_index.systematically | 113 |
| abstract_inverted_index.characteristics | 117 |
| abstract_inverted_index.ever-increasing | 6 |
| abstract_inverted_index.tasks/workflows | 194 |
| abstract_inverted_index.high-performance | 178 |
| abstract_inverted_index.energy-constrained | 148 |
| abstract_inverted_index.resource-constrained | 32 |
| abstract_inverted_index.computationally-intensive | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |