BEST APPROXIMATION IN SOFT METRIC SPACES Article Swipe
This article examines best approximation within soft metric spaces, a framework that effectively models uncertain and imprecise data. Extending classical best approximation theory, defining soft best approximation distance and establish theorem under soft contractive and cyclic contractive mappings in complete soft metric spaces. To demonstrate applicability, we provide illustrative examples, including a store-customer model and a blood diagnostics case study, where optimal approximate solutions are needed under parameterized uncertainty. In addition, we present algorithmic procedures for identifying soft best proximity points, reinforcing the practical relevance of our results with flow chart of healthy person.
Related Topics
Concepts
Parameterized complexity
Metric (unit)
Mathematics
Metric space
Approximation error
Flow chart
Approximation algorithm
Applied mathematics
Flow (mathematics)
Mathematical optimization
Relevance (law)
Approximation theory
Product metric
Chart
Algorithm
Discrete mathematics
Computer science
Soft set
Approximations of π
Metadata
- Type
- article
- Landing Page
- https://doi.org/10.12732/ijam.v38i9s.895
- https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W7104809308
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7104809308Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12732/ijam.v38i9s.895Digital Object Identifier
- Title
-
BEST APPROXIMATION IN SOFT METRIC SPACESWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-03Full publication date if available
- Authors
-
Dilip Kumar SahList of authors in order
- Landing page
-
https://doi.org/10.12732/ijam.v38i9s.895Publisher landing page
- PDF URL
-
https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825Direct OA link when available
- Concepts
-
Parameterized complexity, Metric (unit), Mathematics, Metric space, Approximation error, Flow chart, Approximation algorithm, Applied mathematics, Flow (mathematics), Mathematical optimization, Relevance (law), Approximation theory, Product metric, Chart, Algorithm, Discrete mathematics, Computer science, Soft set, Approximations of πTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7104809308 |
|---|---|
| doi | https://doi.org/10.12732/ijam.v38i9s.895 |
| ids.doi | https://doi.org/10.12732/ijam.v38i9s.895 |
| ids.openalex | https://openalex.org/W7104809308 |
| fwci | 0.0 |
| type | article |
| title | BEST APPROXIMATION IN SOFT METRIC SPACES |
| biblio.issue | 9s |
| biblio.volume | 38 |
| biblio.last_page | 1844 |
| biblio.first_page | 1835 |
| topics[0].id | https://openalex.org/T11777 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.748239278793335 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Fixed Point Theorems Analysis |
| topics[1].id | https://openalex.org/T12135 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.1590547412633896 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Fuzzy Systems and Optimization |
| topics[2].id | https://openalex.org/T12541 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.009483505971729755 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Graph Labeling and Dimension Problems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165464430 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7575817108154297 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[0].display_name | Parameterized complexity |
| concepts[1].id | https://openalex.org/C176217482 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7370681762695312 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[1].display_name | Metric (unit) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6231473088264465 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C198043062 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5731561183929443 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180953 |
| concepts[3].display_name | Metric space |
| concepts[4].id | https://openalex.org/C122383733 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4375457465648651 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q865920 |
| concepts[4].display_name | Approximation error |
| concepts[5].id | https://openalex.org/C2984431290 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42037340998649597 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q185092 |
| concepts[5].display_name | Flow chart |
| concepts[6].id | https://openalex.org/C148764684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4135605990886688 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[6].display_name | Approximation algorithm |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3998861610889435 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C38349280 |
| concepts[8].level | 2 |
| concepts[8].score | 0.38106104731559753 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[8].display_name | Flow (mathematics) |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37402859330177307 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C158154518 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35872945189476013 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[10].display_name | Relevance (law) |
| concepts[11].id | https://openalex.org/C145242015 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3530862033367157 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q774123 |
| concepts[11].display_name | Approximation theory |
| concepts[12].id | https://openalex.org/C154497576 |
| concepts[12].level | 3 |
| concepts[12].score | 0.33471620082855225 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7247777 |
| concepts[12].display_name | Product metric |
| concepts[13].id | https://openalex.org/C190812933 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33383801579475403 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q28923 |
| concepts[13].display_name | Chart |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3167892098426819 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C118615104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.29612815380096436 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[15].display_name | Discrete mathematics |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.292216956615448 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C2777037408 |
| concepts[17].level | 3 |
| concepts[17].score | 0.2911604642868042 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4310193 |
| concepts[17].display_name | Soft set |
| concepts[18].id | https://openalex.org/C193386753 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2865155339241028 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1130396 |
| concepts[18].display_name | Approximations of π |
| keywords[0].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[0].score | 0.7575817108154297 |
| keywords[0].display_name | Parameterized complexity |
| keywords[1].id | https://openalex.org/keywords/metric |
| keywords[1].score | 0.7370681762695312 |
| keywords[1].display_name | Metric (unit) |
| keywords[2].id | https://openalex.org/keywords/metric-space |
| keywords[2].score | 0.5731561183929443 |
| keywords[2].display_name | Metric space |
| keywords[3].id | https://openalex.org/keywords/approximation-error |
| keywords[3].score | 0.4375457465648651 |
| keywords[3].display_name | Approximation error |
| keywords[4].id | https://openalex.org/keywords/flow-chart |
| keywords[4].score | 0.42037340998649597 |
| keywords[4].display_name | Flow chart |
| keywords[5].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[5].score | 0.4135605990886688 |
| keywords[5].display_name | Approximation algorithm |
| keywords[6].id | https://openalex.org/keywords/flow |
| keywords[6].score | 0.38106104731559753 |
| keywords[6].display_name | Flow (mathematics) |
| language | |
| locations[0].id | doi:10.12732/ijam.v38i9s.895 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210189830 |
| locations[0].source.issn | 1311-1728, 1314-8060 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1311-1728 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Apllied Mathematics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Applied Mathematics |
| locations[0].landing_page_url | https://doi.org/10.12732/ijam.v38i9s.895 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A3139029397 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dilip Kumar Sah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dilip Kumar Sah |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-11T00:00:00 |
| display_name | BEST APPROXIMATION IN SOFT METRIC SPACES |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-12T23:11:45.498971 |
| primary_topic.id | https://openalex.org/T11777 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.748239278793335 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Fixed Point Theorems Analysis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.12732/ijam.v38i9s.895 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210189830 |
| best_oa_location.source.issn | 1311-1728, 1314-8060 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1311-1728 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Apllied Mathematics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Applied Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.12732/ijam.v38i9s.895 |
| primary_location.id | doi:10.12732/ijam.v38i9s.895 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210189830 |
| primary_location.source.issn | 1311-1728, 1314-8060 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1311-1728 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Apllied Mathematics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | https://ijamjournal.org/ijam/publication/index.php/ijam/article/download/895/825 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Applied Mathematics |
| primary_location.landing_page_url | https://doi.org/10.12732/ijam.v38i9s.895 |
| publication_date | 2025-11-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 51, 55 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.in | 38 |
| abstract_inverted_index.of | 85, 91 |
| abstract_inverted_index.we | 46, 71 |
| abstract_inverted_index.and | 15, 28, 34, 54 |
| abstract_inverted_index.are | 64 |
| abstract_inverted_index.for | 75 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.the | 82 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.best | 3, 20, 25, 78 |
| abstract_inverted_index.case | 58 |
| abstract_inverted_index.flow | 89 |
| abstract_inverted_index.soft | 6, 24, 32, 40, 77 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.blood | 56 |
| abstract_inverted_index.chart | 90 |
| abstract_inverted_index.data. | 17 |
| abstract_inverted_index.model | 53 |
| abstract_inverted_index.under | 31, 66 |
| abstract_inverted_index.where | 60 |
| abstract_inverted_index.cyclic | 35 |
| abstract_inverted_index.metric | 7, 41 |
| abstract_inverted_index.models | 13 |
| abstract_inverted_index.needed | 65 |
| abstract_inverted_index.study, | 59 |
| abstract_inverted_index.within | 5 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.healthy | 92 |
| abstract_inverted_index.optimal | 61 |
| abstract_inverted_index.person. | 93 |
| abstract_inverted_index.points, | 80 |
| abstract_inverted_index.present | 72 |
| abstract_inverted_index.provide | 47 |
| abstract_inverted_index.results | 87 |
| abstract_inverted_index.spaces, | 8 |
| abstract_inverted_index.spaces. | 42 |
| abstract_inverted_index.theorem | 30 |
| abstract_inverted_index.theory, | 22 |
| abstract_inverted_index.complete | 39 |
| abstract_inverted_index.defining | 23 |
| abstract_inverted_index.distance | 27 |
| abstract_inverted_index.examines | 2 |
| abstract_inverted_index.mappings | 37 |
| abstract_inverted_index.Extending | 18 |
| abstract_inverted_index.addition, | 70 |
| abstract_inverted_index.classical | 19 |
| abstract_inverted_index.establish | 29 |
| abstract_inverted_index.examples, | 49 |
| abstract_inverted_index.framework | 10 |
| abstract_inverted_index.imprecise | 16 |
| abstract_inverted_index.including | 50 |
| abstract_inverted_index.practical | 83 |
| abstract_inverted_index.proximity | 79 |
| abstract_inverted_index.relevance | 84 |
| abstract_inverted_index.solutions | 63 |
| abstract_inverted_index.uncertain | 14 |
| abstract_inverted_index.procedures | 74 |
| abstract_inverted_index.algorithmic | 73 |
| abstract_inverted_index.approximate | 62 |
| abstract_inverted_index.contractive | 33, 36 |
| abstract_inverted_index.demonstrate | 44 |
| abstract_inverted_index.diagnostics | 57 |
| abstract_inverted_index.effectively | 12 |
| abstract_inverted_index.identifying | 76 |
| abstract_inverted_index.reinforcing | 81 |
| abstract_inverted_index.illustrative | 48 |
| abstract_inverted_index.uncertainty. | 68 |
| abstract_inverted_index.approximation | 4, 21, 26 |
| abstract_inverted_index.parameterized | 67 |
| abstract_inverted_index.applicability, | 45 |
| abstract_inverted_index.store-customer | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.87060916 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |