Best practices for single-cell histone modification analysis Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.09.21.508811
Background Single-cell histone post translation modification (scHPTM) assays such as scCUT&Tag or scChIP-seq allow single-cell mapping of diverse epigenomic landscapes within complex tissues, and are likely to unlock our understanding of various epigenetic mechanisms involved in development or diseases. Running an scHTPM experiment and analyzing the data produced remains, however, a challenging task since few consensus guidelines exist currently regarding good practices for experimental design and data analysis pipelines. Methods We perform a computational benchmark to assess the impact of experimental parameters and of the data analysis pipeline on the ability of the cell representation produced to recapitulate known biological similarities. We run more than ten thousands experiments to systematically study the impact of coverage and number of cells, of the count matrix construction method, of feature selection and normalization, and of the dimension reduction algorithm used. Results The analysis of the benchmark results allows us to identify key experimental parameters and computational choices to obtain a good representation of single-cell HPTM data. We show in particular that the count matrix construction step has a strong influence on the quality of the representation, and that using fixed-size bin counts outperforms annotation-based binning; that dimension reduction methods based on latent semantic indexing outperform others; and that feature selection is detrimental, while keeping only high-quality cells has little influence on the final representation as long as enough cells are analyzed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.09.21.508811
- https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdf
- OA Status
- green
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297894174
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297894174Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.09.21.508811Digital Object Identifier
- Title
-
Best practices for single-cell histone modification analysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-22Full publication date if available
- Authors
-
Félix Raimundo, Pacôme Prompsy, Jean‐Philippe Vert, Céline VallotList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.09.21.508811Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdfDirect OA link when available
- Concepts
-
Computer science, Dimensionality reduction, Benchmark (surveying), Representation (politics), Feature selection, Normalization (sociology), Pipeline (software), Selection (genetic algorithm), Probabilistic logic, Data mining, Artificial intelligence, Machine learning, Geodesy, Geography, Political science, Sociology, Politics, Anthropology, Programming language, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297894174 |
|---|---|
| doi | https://doi.org/10.1101/2022.09.21.508811 |
| ids.doi | https://doi.org/10.1101/2022.09.21.508811 |
| ids.openalex | https://openalex.org/W4297894174 |
| fwci | 0.0 |
| type | preprint |
| title | Best practices for single-cell histone modification analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10269 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Epigenetics and DNA Methylation |
| topics[2].id | https://openalex.org/T10222 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Genomics and Chromatin Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7051227688789368 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C70518039 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6947795152664185 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[1].display_name | Dimensionality reduction |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.566167950630188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5518190264701843 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C148483581 |
| concepts[4].level | 2 |
| concepts[4].score | 0.534805178642273 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[4].display_name | Feature selection |
| concepts[5].id | https://openalex.org/C136886441 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5234588980674744 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[5].display_name | Normalization (sociology) |
| concepts[6].id | https://openalex.org/C43521106 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5017728805541992 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[6].display_name | Pipeline (software) |
| concepts[7].id | https://openalex.org/C81917197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4193938970565796 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[7].display_name | Selection (genetic algorithm) |
| concepts[8].id | https://openalex.org/C49937458 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4172770380973816 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[8].display_name | Probabilistic logic |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4018757939338684 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3659181296825409 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34712833166122437 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C19165224 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[17].display_name | Anthropology |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7051227688789368 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[1].score | 0.6947795152664185 |
| keywords[1].display_name | Dimensionality reduction |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.566167950630188 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.5518190264701843 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/feature-selection |
| keywords[4].score | 0.534805178642273 |
| keywords[4].display_name | Feature selection |
| keywords[5].id | https://openalex.org/keywords/normalization |
| keywords[5].score | 0.5234588980674744 |
| keywords[5].display_name | Normalization (sociology) |
| keywords[6].id | https://openalex.org/keywords/pipeline |
| keywords[6].score | 0.5017728805541992 |
| keywords[6].display_name | Pipeline (software) |
| keywords[7].id | https://openalex.org/keywords/selection |
| keywords[7].score | 0.4193938970565796 |
| keywords[7].display_name | Selection (genetic algorithm) |
| keywords[8].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[8].score | 0.4172770380973816 |
| keywords[8].display_name | Probabilistic logic |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.4018757939338684 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3659181296825409 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.34712833166122437 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1101/2022.09.21.508811 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.09.21.508811 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055511675 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Félix Raimundo |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].raw_affiliation_string | Google Research, Brain team, 75009 Paris, France |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I2746051580, https://openalex.org/I80043 |
| authorships[0].affiliations[1].raw_affiliation_string | Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[0].institutions[0].id | https://openalex.org/I80043 |
| authorships[0].institutions[0].ror | https://ror.org/04t0gwh46 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I80043 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Institut Curie |
| authorships[0].institutions[1].id | https://openalex.org/I2746051580 |
| authorships[0].institutions[1].ror | https://ror.org/013cjyk83 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I2746051580 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Université Paris Sciences et Lettres |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Félix Raimundo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Google Research, Brain team, 75009 Paris, France, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[1].author.id | https://openalex.org/A5087832103 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4375-7583 |
| authorships[1].author.display_name | Pacôme Prompsy |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2746051580, https://openalex.org/I80043 |
| authorships[1].affiliations[0].raw_affiliation_string | CNRS UMR344, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2746051580, https://openalex.org/I80043 |
| authorships[1].affiliations[1].raw_affiliation_string | Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[1].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[1].institutions[1].id | https://openalex.org/I80043 |
| authorships[1].institutions[1].ror | https://ror.org/04t0gwh46 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I80043 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Institut Curie |
| authorships[1].institutions[2].id | https://openalex.org/I2746051580 |
| authorships[1].institutions[2].ror | https://ror.org/013cjyk83 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I2746051580 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Université Paris Sciences et Lettres |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pacôme Prompsy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CNRS UMR344, Institut Curie, PSL Research University, 75005 Paris, France, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[2].author.id | https://openalex.org/A5064770739 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9510-8441 |
| authorships[2].author.display_name | Jean‐Philippe Vert |
| authorships[2].affiliations[0].raw_affiliation_string | Google Research, Brain team, 75009 Paris, France |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jean-Philippe Vert |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Google Research, Brain team, 75009 Paris, France |
| authorships[3].author.id | https://openalex.org/A5051580508 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1601-2359 |
| authorships[3].author.display_name | Céline Vallot |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2746051580, https://openalex.org/I80043 |
| authorships[3].affiliations[0].raw_affiliation_string | Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2746051580, https://openalex.org/I80043 |
| authorships[3].affiliations[1].raw_affiliation_string | CNRS UMR344, Institut Curie, PSL Research University, 75005 Paris, France |
| authorships[3].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[3].institutions[1].id | https://openalex.org/I80043 |
| authorships[3].institutions[1].ror | https://ror.org/04t0gwh46 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I80043 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Institut Curie |
| authorships[3].institutions[2].id | https://openalex.org/I2746051580 |
| authorships[3].institutions[2].ror | https://ror.org/013cjyk83 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I2746051580 |
| authorships[3].institutions[2].country_code | FR |
| authorships[3].institutions[2].display_name | Université Paris Sciences et Lettres |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Céline Vallot |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | CNRS UMR344, Institut Curie, PSL Research University, 75005 Paris, France, Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Best practices for single-cell histone modification analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2953716828, https://openalex.org/W2904857019, https://openalex.org/W2944728705, https://openalex.org/W3011538607, https://openalex.org/W2904022177, https://openalex.org/W2591697403, https://openalex.org/W4321441197, https://openalex.org/W2359348847, https://openalex.org/W4294432981, https://openalex.org/W20047544 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.09.21.508811 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.09.21.508811 |
| primary_location.id | doi:10.1101/2022.09.21.508811 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/09/22/2022.09.21.508811.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.09.21.508811 |
| publication_date | 2022-09-22 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2126684428, https://openalex.org/W2907110015, https://openalex.org/W2084719919, https://openalex.org/W2323939601, https://openalex.org/W2198371822, https://openalex.org/W3156830838, https://openalex.org/W2947608130, https://openalex.org/W3131450268, https://openalex.org/W3199946236, https://openalex.org/W4223525416, https://openalex.org/W2950993016, https://openalex.org/W3007172120, https://openalex.org/W2947877009, https://openalex.org/W2980147288, https://openalex.org/W2259938310, https://openalex.org/W4220680295, https://openalex.org/W3200876988, https://openalex.org/W2949237386, https://openalex.org/W2765284830, https://openalex.org/W2108108770, https://openalex.org/W3091832721, https://openalex.org/W3210860076, https://openalex.org/W2934716754, https://openalex.org/W3133082627, https://openalex.org/W2979464975, https://openalex.org/W3106106305, https://openalex.org/W1492083415, https://openalex.org/W2736547131, https://openalex.org/W2887910040, https://openalex.org/W2095321122, https://openalex.org/W2756340032, https://openalex.org/W4220669125, https://openalex.org/W4210587306 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 51, 73, 157, 175 |
| abstract_inverted_index.We | 71, 102, 164 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.as | 10, 222, 224 |
| abstract_inverted_index.in | 36, 166 |
| abstract_inverted_index.is | 208 |
| abstract_inverted_index.of | 17, 31, 80, 84, 92, 114, 118, 120, 126, 132, 141, 160, 181 |
| abstract_inverted_index.on | 89, 178, 198, 218 |
| abstract_inverted_index.or | 12, 38 |
| abstract_inverted_index.to | 27, 76, 97, 109, 147, 155 |
| abstract_inverted_index.us | 146 |
| abstract_inverted_index.The | 139 |
| abstract_inverted_index.and | 24, 44, 66, 83, 116, 129, 131, 152, 184, 204 |
| abstract_inverted_index.are | 25, 227 |
| abstract_inverted_index.bin | 188 |
| abstract_inverted_index.few | 55 |
| abstract_inverted_index.for | 63 |
| abstract_inverted_index.has | 174, 215 |
| abstract_inverted_index.key | 149 |
| abstract_inverted_index.our | 29 |
| abstract_inverted_index.run | 103 |
| abstract_inverted_index.ten | 106 |
| abstract_inverted_index.the | 46, 78, 85, 90, 93, 112, 121, 133, 142, 169, 179, 182, 219 |
| abstract_inverted_index.HPTM | 162 |
| abstract_inverted_index.cell | 94 |
| abstract_inverted_index.data | 47, 67, 86 |
| abstract_inverted_index.good | 61, 158 |
| abstract_inverted_index.long | 223 |
| abstract_inverted_index.more | 104 |
| abstract_inverted_index.only | 212 |
| abstract_inverted_index.post | 4 |
| abstract_inverted_index.show | 165 |
| abstract_inverted_index.step | 173 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.task | 53 |
| abstract_inverted_index.than | 105 |
| abstract_inverted_index.that | 168, 185, 193, 205 |
| abstract_inverted_index.allow | 14 |
| abstract_inverted_index.based | 197 |
| abstract_inverted_index.cells | 214, 226 |
| abstract_inverted_index.count | 122, 170 |
| abstract_inverted_index.data. | 163 |
| abstract_inverted_index.exist | 58 |
| abstract_inverted_index.final | 220 |
| abstract_inverted_index.known | 99 |
| abstract_inverted_index.since | 54 |
| abstract_inverted_index.study | 111 |
| abstract_inverted_index.used. | 137 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.while | 210 |
| abstract_inverted_index.allows | 145 |
| abstract_inverted_index.assays | 8 |
| abstract_inverted_index.assess | 77 |
| abstract_inverted_index.cells, | 119 |
| abstract_inverted_index.counts | 189 |
| abstract_inverted_index.design | 65 |
| abstract_inverted_index.enough | 225 |
| abstract_inverted_index.impact | 79, 113 |
| abstract_inverted_index.latent | 199 |
| abstract_inverted_index.likely | 26 |
| abstract_inverted_index.little | 216 |
| abstract_inverted_index.matrix | 123, 171 |
| abstract_inverted_index.number | 117 |
| abstract_inverted_index.obtain | 156 |
| abstract_inverted_index.scHTPM | 42 |
| abstract_inverted_index.strong | 176 |
| abstract_inverted_index.unlock | 28 |
| abstract_inverted_index.within | 21 |
| abstract_inverted_index.Methods | 70 |
| abstract_inverted_index.Results | 138 |
| abstract_inverted_index.Running | 40 |
| abstract_inverted_index.ability | 91 |
| abstract_inverted_index.choices | 154 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.diverse | 18 |
| abstract_inverted_index.feature | 127, 206 |
| abstract_inverted_index.histone | 3 |
| abstract_inverted_index.keeping | 211 |
| abstract_inverted_index.mapping | 16 |
| abstract_inverted_index.method, | 125 |
| abstract_inverted_index.methods | 196 |
| abstract_inverted_index.others; | 203 |
| abstract_inverted_index.perform | 72 |
| abstract_inverted_index.quality | 180 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.(scHPTM) | 7 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 68, 87, 140 |
| abstract_inverted_index.binning; | 192 |
| abstract_inverted_index.coverage | 115 |
| abstract_inverted_index.however, | 50 |
| abstract_inverted_index.identify | 148 |
| abstract_inverted_index.indexing | 201 |
| abstract_inverted_index.involved | 35 |
| abstract_inverted_index.pipeline | 88 |
| abstract_inverted_index.produced | 48, 96 |
| abstract_inverted_index.remains, | 49 |
| abstract_inverted_index.semantic | 200 |
| abstract_inverted_index.tissues, | 23 |
| abstract_inverted_index.algorithm | 136 |
| abstract_inverted_index.analyzed. | 228 |
| abstract_inverted_index.analyzing | 45 |
| abstract_inverted_index.benchmark | 75, 143 |
| abstract_inverted_index.consensus | 56 |
| abstract_inverted_index.currently | 59 |
| abstract_inverted_index.dimension | 134, 194 |
| abstract_inverted_index.diseases. | 39 |
| abstract_inverted_index.influence | 177, 217 |
| abstract_inverted_index.practices | 62 |
| abstract_inverted_index.reduction | 135, 195 |
| abstract_inverted_index.regarding | 60 |
| abstract_inverted_index.selection | 128, 207 |
| abstract_inverted_index.thousands | 107 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.biological | 100 |
| abstract_inverted_index.epigenetic | 33 |
| abstract_inverted_index.epigenomic | 19 |
| abstract_inverted_index.experiment | 43 |
| abstract_inverted_index.fixed-size | 187 |
| abstract_inverted_index.guidelines | 57 |
| abstract_inverted_index.landscapes | 20 |
| abstract_inverted_index.mechanisms | 34 |
| abstract_inverted_index.outperform | 202 |
| abstract_inverted_index.parameters | 82, 151 |
| abstract_inverted_index.particular | 167 |
| abstract_inverted_index.pipelines. | 69 |
| abstract_inverted_index.scChIP-seq | 13 |
| abstract_inverted_index.Single-cell | 2 |
| abstract_inverted_index.challenging | 52 |
| abstract_inverted_index.development | 37 |
| abstract_inverted_index.experiments | 108 |
| abstract_inverted_index.outperforms | 190 |
| abstract_inverted_index.single-cell | 15, 161 |
| abstract_inverted_index.translation | 5 |
| abstract_inverted_index.construction | 124, 172 |
| abstract_inverted_index.detrimental, | 209 |
| abstract_inverted_index.experimental | 64, 81, 150 |
| abstract_inverted_index.high-quality | 213 |
| abstract_inverted_index.modification | 6 |
| abstract_inverted_index.recapitulate | 98 |
| abstract_inverted_index.computational | 74, 153 |
| abstract_inverted_index.scCUT&Tag | 11 |
| abstract_inverted_index.similarities. | 101 |
| abstract_inverted_index.understanding | 30 |
| abstract_inverted_index.normalization, | 130 |
| abstract_inverted_index.representation | 95, 159, 221 |
| abstract_inverted_index.systematically | 110 |
| abstract_inverted_index.representation, | 183 |
| abstract_inverted_index.annotation-based | 191 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5064770739, https://openalex.org/A5051580508 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2746051580, https://openalex.org/I80043 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.11742908 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |